Review| Volume 85, ISSUE 1-3, P1-17, December 20, 2000

Functional and chemical anatomy of the afferent vagal system


      The results of neural tracing studies suggest that vagal afferent fibers in cervical and thoracic branches innervate the esophagus, lower airways, heart, aorta, and possibly the thymus, and via abdominal branches the entire gastrointestinal tract, liver, portal vein, billiary system, pancreas, but not the spleen. In addition, vagal afferents innervate numerous thoracic and abdominal paraganglia associated with the vagus nerves. Specific terminal structures such as flower basket terminals, intraganglionic laminar endings and intramuscular arrays have been identified in the various organs and organ compartments, suggesting functional specializations. Electrophysiological recording studies have identified mechano- and chemo-receptors, as well as temperature- and osmo-sensors. In the rat and several other species, mostly polymodal units, while in the cat more specialized units have been reported. Few details of the peripheral transduction cascades and the transmitters for signal propagation in the CNS are known. Glutamate and its various receptors are likely to play an important role at the level of primary afferent signaling to the solitary nucleus. The vagal afferent system is thus in an excellent position to detect immune-related events in the periphery and generate appropriate autonomic, endocrine, and behavioral responses via central reflex pathways. There is also good evidence for a role of vagal afferents in nociception, as manifested by affective-emotional responses such as increased blood pressure and tachycardia, typically associated with the perception of pain, and mediated via central reflex pathways involving the amygdala and other parts of the limbic system. The massive central projections are likely to be responsible for the antiepileptic properties of afferent vagal stimulation in humans. Furthermore, these functions are in line with a general defensive character ascribed to the vagal afferent, paraventricular system in lower vertebrates.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Autonomic Neuroscience: Basic and Clinical
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Adachi A.
        Projection of the hepatic vagal nerve in the medulla oblongata.
        J. Auton. Nerv. Syst. 1984; 10: 287-293
        • Adachi A.
        • Kobashi M.
        • Mitoh Y.
        Hepatic osmosensors and their role in fluid homeostasis.
        in: Shimazu T. Liver Innervation. John Libbey, London1996: 347-353
        • Adriaensen D.
        • Timmermans J.-P.
        • Brouns I.
        • Berthoud H.-R.
        • Neuhuber W.L.
        • Scheuermann D.W.
        Pulmonary intraepithelial vagal nodose afferent nerve terminals are confined to neuroepithelial bodies: an anterograde tracing and confocal microscopy study in adult rats.
        Cell Tissue Res. 1998; 293: 395-405
        • Agostoni E.
        • Chinnock J.E.
        • Daly M.
        • et al.
        Functional and histological studies of the vagus nerve and its branches to the heart, lungs and abdominal viscera in the cat.
        J. Physiol. 1957; 135: 182-205
        • Aicher S.A.
        • Sharma S.
        • Pickel V.M.
        N-methyl-d-aspartate receptors are present in vagal afferents and their dendritic targets in the nucleus tractus solitarius.
        Neuroscience. 1999; 91: 119-132
        • Altschuler S.M.
        • Bao X.M.
        • Bieger D.
        • Hopkins D.A.
        • Miselis R.R.
        Viscerotopic representation of the upper alimentary tract in the rat: sensory ganglia and nuclei of the solitary and spinal trigeminal tracts.
        J. Comp. Neurol. 1989; 283: 248-268
        • Ammons W.S.
        • Blair R.W.
        • Foreman R.D.
        Vagal afferent inhibition of primate thoracic spinothalamic neurons.
        J. Neurophysiol. 1983; 50: 926-940
        • Andrews P.L.R.
        • Lawes I.N.C.
        A protective role for vagal afferents: a hypothesis.
        in: Ritter S. Ritter R.C. Barnes C.D. Neuroanatomy and Physiology of Abdominal Vagal Afferents. CRC Press, Boca Raton, FL1992: 221-248
        • Andrews P.L.
        Vagal afferent innervation of the gastrointestinal tract.
        Prog. Brain Res. 1986; 67: 65-86
        • Asala S.A.
        • Bower A.J.
        An electron microscope study of vagus nerve composition in the ferret.
        Anat. Embryol. 1986; 176: 247-253
        • Barber W.D.
        • Burks T.F.
        Brainstem response to phasic gastric distension.
        Am. J. Physiol. 1983; 245: G242-G248
        • Berthoud H.-R.
        • Powley T.L.
        Morphology and distribution of efferent vagal innervation of rat pancreas as revealed with anterograde transport of DiI.
        Brain Res. 1991; 553: 336-341
        • Berthoud H.-R.
        • Powley T.L.
        Vagal afferent innervation of the rat fundic stomach: morphological characterization of the gastric tension receptor.
        J. Comp. Neurol. 1992; 319: 261-276
        • Berthoud H.-R.
        • Kressel M.
        • Neuhuber W.L.
        An anterograde tracing study of the vagal innervation of rat liver, portal vein and biliary system.
        Anat. Embryol. 1992; 186: 431-442
        • Berthoud H.-R.
        • Kressel M.
        • Neuhuber W.L.
        Vagal afferent innervation of rat abdominal paraganglia as revealed by anterograde DiI-tracing and confocal microscopy.
        Acta Anat. 1995; 152: 127-132
        • Berthoud H.-R.
        • Kressel M.
        • Raybould H.E.
        • Neuhuber W.L.
        Vagal sensors in the rat duodenal mucosa: distribution and structure as revealed by in vivo DiI-tracing.
        Anat. Embryol. (Berl.). 1995; 191: 203-212
        • Berthoud H.-R.
        • Neuhuber W.L.
        An anatomical analysis of vagal and spinal afferent innervation of the rat liver and associated organs.
        in: Shimazu T. Liver Innervation. John Libbey, London1996: 31-42
        • Berthoud H.-R.
        • Powley T.L.
        Interaction between parasympathetic and sympathetic nerves in prevertebral ganglia: morphological evidence for vagal efferent innervation of ganglion cells in the rat.
        Microsc. Res. Tech. 1996; 35: 80-86
        • Berthoud H.-R.
        • Patterson L.M.
        Anatomical relationship between vagal afferent fibers and CCK-immunoreactive entero-endocrine cells in the rat small intestinal mucosa.
        Acta Anat. 1996; 156: 123-131
        • Berthoud H.-R.
        • Patterson L.M.
        Innervation of rat abdominal paraganglia by calretinin-like immunoreactive nerve fibers.
        Neurosci. Lett. 1996; 210: 115-118
        • Berthoud H.-R.
        • Patterson L.M.
        • Neumann F.
        • Neuhuber W.L.
        Distribution and structure of vagal afferent intraganglionic laminar endings (IGLEs) in the rat gastrointestinal tract.
        Anat. Embryol. (Berl.). 1997; 195: 183-191
        • Berthoud H.-R.
        • Patterson L.M.
        • Willing A.E.
        • Mueller K.
        • Neuhuber W.L.
        Capsaicin-resistant vagal afferent fibers in the rat gastrointestinal tract: anatomical identification and functional integrity.
        Brain Res. 1997; 746: 195-206
        • Berthoud H.-R.
        • Neuhuber W.L.
        Peripheral and central functional neuroanatomy of sensory and motor innervation of the portal-hepatic axis and biliary system.
        in: Häussinger D. Jungermann K. Liver and Nervous System. Kluwer, London1999: 17-33
        • Berthoud H.-R.
        • Patterson L.M.
        Identification of CCKA receptor in brainstem and gut by two antibodies: are there different CCKA receptor subtypes.
        Appetite. 2000; (In press)
        • Berthoud H.-R.
        • Earle T.
        • Zheng H.
        Distribution of NMDA and non-NMDA glutamate receptors on caudal brainstem neurons with vagal input from gastrointestinal mechano- and chemoreceptors.
        Soc. Neurosci. Abs. 2000; (In press)
        • Blackshaw L.A.
        • Grundy D.
        Effects of cholecystokinin (CCK-8) on two classes of gastroduodenal vagal afferent fiber.
        J. Auton. Nerv. Syst. 1990; 31: 191-202
        • Böck P.
        The paraganglia.
        in: von Möllendorf W. Handbuch der mikroskopischen Anatomie des Menschen. Vol. VI. Springer, Berlin1982: 1-222 (Part 8)
        • Broussard D.L.
        • Wiedner E.B.
        • Altschuler S.M.
        NMDAR1 mRNA expression in the brainstem circuit controlling esophageal peristalsis.
        Mol. Brain Res. 1994; 27: 329-332
        • Bucinskaite V.
        • Kurosawa M.
        • Miyasaka K.
        • Funakoshi A.
        • Lundeberg T.
        Interleukin-1beta sensitizes the response of the gastric vagal afferent to cholecystokinin in rat.
        Neurosci. Lett. 1997; 229: 33-36
        • Bulloch K.
        • Moore R.Y.
        Innervation of the thymus gland by brain stem and spinal cord in mouse and rat.
        Am. J. Anat. 1981; 162: 157-166
        • Carobi C.
        Capsaicin-sensitive vagal afferent neurons innervating the rat pancreas.
        Neurosci. Lett. 1987; 77: 5-9
        • Carobi C.
        A quantitative investigation of the effects of neonatal capsaicin treatment on vagal afferent neurons in the rat.
        Cell Tissue Res. 1996; 283: 305-311
        • Carobi C.
        • Magni F.
        Capsaicin-sensitive afferent vagal neurons innervating the rat liver.
        Neurosci. Lett. 1985; 62: 261-265
        • Castex N.
        • Fioramonti J.
        • Fargeas M.-J.
        • Bueno L.
        c-fos expression in specific rat brain nuclei after intestinal anaphylaxis: involvement of 5-HT3 receptors and vagal afferent fibers.
        Brain Res. 1995; 688: 149-160
        • Castex N.
        • Fioramonti J.
        • Fargeas M.-J.
        • More J.
        • Bueno L.
        Role of 5-HT3 receptors and afferent fibers in the effects of mast cell degranulation on colonic motility in rats.
        Gastroenterology. 1994; 107: 976-984
        • Chambert G.
        • Kobashi M.
        • Adachi A.
        Convergence of gastric and hepatic information in brainstem neurons of the rat.
        Brain Res. Bull. 1993; 32: 525-529
        • Chandler M.J.
        • Zhang J.
        • Foreman R.D.
        Vagal, sympathetic and somatic sensory inputs to upper cervical (C1–C3) spinothalamic tract neurons in monkeys.
        J. Neurophysiol. 1996; 76: 2555-2567
        • Cheng Z.
        • Powley T.L.
        • Schwaber J.S.
        • Doyle F.J.
        Vagal afferent innervation of the atria of the rat heart reconstructed with confocal microscopy.
        J. Comp. Neurol. 1997; 381: 1-17
        • Cheng Z.
        • Powley T.L.
        • Schwaber J.S.
        • Doyle F.J.
        A laser confocal microscopic study of vagal afferent innervation of rat aortic arch: chemoreceptors as well as baroreceptors.
        J. Auton. Nerv. Syst. 1997; 67: 1-14
        • Chung K.
        • Klein C.M.
        • Coggeshall R.E.
        The receptive part of the primary afferent axon is most vulnerable to systemic capsaicin in adult rats.
        Brain Res. 1990; 511: 222-226
        • Collins J.J.
        • Lin C.E.
        • Berthoud H.-R.
        • Papka R.E.
        Vagal afferents from the uterus and cervix provide direct connections to the brainstem.
        Cell Tissue Res. 1999; 295: 43-54
        • Cottrell D.F.
        • Iggo A.
        Tension receptors with vagal afferent fibers in the proximal duodenum and pyloric sphincter of sheep.
        J. Physiol. (Lond.). 1984; 354: 457-475
        • Dahlqvist A.
        • Neuhuber W.L.
        • Forsgren S.
        Innervation of laryngeal nerve paraganglia: an anterograde tracing and immunohistochemical study in the rat.
        J. Comp. Neurol. 1994; 345: 440-446
        • Davison J.S.
        • Clarke G.D.
        Mechanical properties and sensitivity to CCK of vagal gastric slowly adapting mechanoreceptors.
        Am. J. Physiol. 1988; 255: G55-G61
        • Delbro D.
        • Fändriks L.
        • Rosell S.
        • Folkers K.
        Inhibition of antidromically induced stimulation of gastric motility by substance P receptor blockade.
        Acta Physiol. Scand. 1983; 118: 309-316
        • Dong H.
        • Loomis C.W.
        • Bieger D.
        Effects of vagal cooling on esophageal cardiovascular reflex responses in the rat.
        Neurosci. Lett. 2000; 287: 89-92
        • Dovas A.
        • Lucchi M.L.
        • Bortolami R.
        • Grandis A.
        • Palladino A.R.
        • Banelli E.
        • Carretta M.
        • Magni F.
        • Paolocci N.
        Collaterals of recurrent laryngeal nerve fibres innervate the thymus: a fluorescent tracer and HRP investigation of efferent vagal neurons in the rat brainstem.
        Brain Res. 1998; 809: 141-148
        • Dütsch M.
        • Eichhorn U.
        • Wörl J.
        • Wank M.
        • Berthoud H.-R.
        • Neuhuber W.L.
        Vagal and spinal afferent innervation of the rat esophagus: a combined retrograde tracing and immunocytochemical study with special emphasis on calcium-binding proteins.
        J. Comp. Neurol. 1998; 398: 289-307
        • Dutschmann M.
        • Guthmann A.
        • Herbert H.
        NMDA receptor subunit NR1-immunoreactivity in the rat pons and brainstem and colocalization with Fos induced by nasal stimulation.
        Brain Res. 1998; 809: 221-230
        • Ek M.
        • Kurosawa M.
        • Lundeberg T.
        • Ericsson A.
        Activation of vagal afferents after intravenous injection of interleukin-1beta: role of endogenous prostaglandins.
        J. Neurosci. 1998; 18: 9471-9479
        • El Ouazzani T.
        • Mei N.
        Vagal thermoreceptors in the gastro-intestinal area. Their role in the regulation of the digestive motility.
        Exp. Brain Res. 1979; 34: 419-434
        • El Ouazzani T.
        • Mei N.
        Electrophysiologic properties and role of the vagal thermoreceptors of lower esophagus and stomach of cat.
        Gastroenterology. 1982; 83: 995-1001
        • Emond M.H.
        • Weingarten H.P.
        Fos-like immunoreactivity in vagal and hypoglossal nuclei in different feeding states: a quantitative study.
        Physiol. Behav. 1994; 58: 459-465
        • Evans D.H.L.
        • Murray J.G.
        Histological and functional studies on the fiber composition of the vagus nerve of the rabbit.
        J. Anat. 1954; 93: 9-14
        • Feher E.
        Peptidergic innervation of the liver.
        in: Häussinger D. Jungermann K. Liver and Nervous System. Kluwer, London1999: 17-33
        • Fitzakerley J.L.
        • Lucier G.E.
        Connections of a vagal communicating branch in the ferret. I. Pathways and cell body location.
        Brain Res. Bull. 1988; 20: 189-196
        • Forssmann W.G.
        • Ito S.
        Hepatocyte innervation in primates.
        J. Cell Biol. 1977; 74: 299-313
        • Fraser K.A.
        • Davison J.S.
        Meal-induced c-fos expression in brainstem is not dependent on cholecystokinin release.
        Am. J. Physiol. 1993; 265: R235-R239
        • Fraser K.A.
        • Raizada E.
        • Davison J.S.
        Oral-pharyngeal-esophageal and gastric cues contribute to meal-induced c-fos expression.
        Am. J. Physiol. 1995; 268: R223-R230
        • Fu Q.G.
        • Chandler M.J.
        • McNeill D.L.
        • Foreman R.D.
        Vagal afferent fibers excite upper cervical neurons and inhibit activity of lumbar spinal cord neurons in the rat.
        Pain. 1992; 51: 91-100
        • Goehler L.E.
        • Gaykema R.P.
        • Nguyen K.T.
        • Lee J.E.
        • Tilders F.J.
        • Maier S.F.
        • Watkins L.R.
        Interleukin-1beta in immune cells of the abdominal vagus nerve: a link between the immune and nervous systems?.
        J. Neurosci. 1999; 19: 2799-2806
        • Goehler L.E.
        • Relton J.K.
        • Dripps D.
        • Kiechle R.
        • Tartaglia N.
        • Maier S.F.
        • Watkins L.R.
        Vagal paraganglia bind biotinylated interleukin-1 receptor antagonist: a possible mechanism for immune-to-brain communication.
        Brain Res. Bull. 1997; 43: 357-364
        • Goormaghtigh N.
        On the existence of abdominal vagal paraganglia in the adult mouse.
        J. Anat. 1936; 71: 77-90
        • Grundy D.
        • Scratcherd T.
        Sensory afferents from the gastrointestinal tract.
        in: Rauner B.B. Motility and Circulation. Handbook of Physiology. Vol. I. The American Physiological Society, Oxford University Press, New York1989: 593-620 (Section 6: the gastrointestinal system)
        • Guenther S.
        • Reeh P.W.
        • Kress M.
        Rises in [Ca2+]I mediate capsaicin- and proton-induced heat sensitization of rat primary nociceptive neurons.
        Eur. J. Neurosci. 1999; 11: 3143-3150
        • Guz A.
        Respiratory sensations in man.
        Br. Med. Bull. 1977; 33: 175-177
        • Hartmann K.U.
        • von Eckardstein S.
        • Darwin E.
        Differentiation of epithelial stroma during ontogenesis of the thymus in mice: a speculation on the origin of the thymus as a sensory organ.
        Thymus. 1989; 13: 195-200
        • Helke C.J.
        • Goldman W.
        • Jacobowitz M.
        Demonstration of substance P in aortic nerve afferent fibers by combined use of fluorescent retrograde neuronal labeling and immunohistochemistry.
        Peptides. 1980; 1: 359-364
        • Hervonen A.
        • Partanen S.
        • Vaalasti A.
        • Partanen M.
        • Kanerva L.
        • Alho H.
        The distribution and endocrine nature of the abdominal paraganglia of adult man.
        Am. J. Anat. 1978; 153: 563-572
        • Hillsley K.
        • Grundy D.
        Sensitivity to 5-hydroxytryptamine in different afferent subpopulations within mesenteric nerves supplying the rat jejunum.
        J. Physiol. (Lond.). 1998; 509: 717-727
        • Hillsley K.
        • Grundy D.
        Serotonin and cholecystokinin activate different populations of rat mesenteric vagal afferents.
        Neurosci. Lett. 1998; 255: 63-66
        • Hofer D.
        • Puschel B.
        • Drenckhahn D.
        Taste-receptor-like cells in the rat gut identified by expression of alpha-gustducin.
        Proc. Natl. Acad. Sci. USA. 1996; 93: 6631-6634
        • Holzer P.
        Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons.
        Pharmacol. Rev. 1991; 43: 143-201
        • Holzer P.
        Neural injury, repair, and adaptation in the GI tract. II. The elusive action of capsaicin on the vagus nerve.
        Am. J. Physiol. 1998; 275: G8-G13
        • Howe A.
        • Pack R.J.
        • Wise J.C.M.
        Arterial chemoreceptor-like activity in the abdominal vagus of the rat.
        J. Physiol. (Lond.). 1981; 320: 309-318
        • Hummel T.
        • Sengupta J.N.
        • Meller S.T.
        • Gebhart G.F.
        Responses of T2-4 spinal cord neurons to irritation of the lower airways in the rat.
        Am. J. Physiol. 1997; 273: R1147-R1157
        • Ichikawa H.
        • Helke C.J.
        Coexistence of calcium-binding proteins in vagal and glossopharyngeal sensory neurons of the rat.
        Brain Res. 1997; 768: 349-353
        • Iwai M.
        • Miyashita T.
        • Shimazu T.
        Inhibition of glucose production during hepatic nerve stimulation in regenerating rat liver perfused in situ. Possible involvement of gap junctions in the action of sympathetic nerves.
        Eur. J. Biochem. 1991; 200: 69-74
        • Jancso G.
        • Kiraly E.
        • Jancso-Gabor A.
        Pharmacologically induced selective degeneration of chemosensitive primary sensory neurons.
        Nature. 1977; 270: 741-743
        • Kalia M.
        • Mesulam M.-M.
        Brain stem projections of sensory and motor components of the vagus complex in the cat: I. The cervical vagus and nodose ganglion.
        J. Comp. Neurol. 1980; 193: 435-465
        • Kalia M.
        • Mesulam M.-M.
        Brain stem projections of sensory and motor components of the vagus complex in the cat: II. Laryngeal, tracheobronchial, pulmonary, cardiac, and gastrointestinal branches.
        J. Comp. Neurol. 1980; 193: 523-553
        • Khasar S.G.
        • Miao F.J.P.
        • Janig W.
        • Levine J.D.
        Modulation of bradykinin-induced mechanical hyperalgesia in the rat by activity in abdominal vagal afferents.
        Eur. J. Neurosci. 1998; 10: 435-444
        • Khasar S.G.
        • Miao F.J.P.
        • Janig W.
        • Levine J.D.
        Vagotomy-induced enhancement of mechanical hyperalgesia in the rat is sympathoadrenal-mediated.
        J. Neurosci. 1998; 18: 3043-3049
        • Kohn A.
        Die Paraganglien.
        Arch. Mikrosk. Anat. 1903; 62: 263-365
        • Kressel M.
        Tyramide amplification allows anterograde tracing by horseradish peroxidase-conjugated lectins in conjunction with simultaneous immunohistochemistry.
        J. Histochem. Cytochem. 1998; 46: 527-533
        • Kressel M.
        • Radespiel-Tröger M.
        Anterograde tracing and immunohistochemical characterization of potentially mechanosensitive vagal afferents in the esophagus.
        J. Comp. Neurol. 1999; 412: 161-172
        • Kummer W.
        • Addicks K.
        The paraganglion supracardiale vagi: an intravagal paraganglion in the rat.
        Cell Tissue Res. 1982; 224: 455-458
        • Kummer W.
        • Fischer A.
        • Kurkowski R.
        • Heym C.
        The sensory and sympathetic innervation of guinea-pig lung and trachea as studied by retrograde neuronal tracing and double-labeling immunohistochemistry.
        Neuroscience. 1992; 49: 715-737
        • Kummer W.
        • Neuhuber W.L.
        Vagal paraganglia of the rat.
        J. Electron Microsc. Tech. 1989; 12: 343-355
        • Kurosawa M.
        • Uvnas-Moberg K.
        • Miyasaka K.
        • Lundeberg T.
        Interleukin-1 increases activity of the gastric vagal afferent nerve partly via stimulation of type A CCK receptor in anesthetized rats.
        J. Auton. Nerv. Syst. 1997; 62: 72-78
        • Leslie R.A.
        • Reynolds D.J.M.
        • Lawes I.N.C.
        Central connections of the nuclei of the vagus nerve.
        in: Ritter S. Ritter R.C. Barnes C.D. Neuroanatomy and Physiology of Abdominal Vagal Afferents. CRC Press, Boca Raton, FL1992: 221-248
        • Lewis S.J.
        • Verberne A.J.
        • Louis C.J.
        • Jarrott B.
        • Beart P.M.
        • Louis W.J.
        Excitotoxin-induced degeneration of rat vagal afferent neurons.
        Neuroscience. 1990; 34: 331-339
        • Li C.S.
        • Smith D.V.
        Glutamate receptor antagonists block gustatory afferent input to the nucleus of the solitary tract.
        J. Neurophysiol. 1997; 77: 1514-1525
        • Li H.
        • Nomura S.
        • Mizuno N.
        Binding of the isolectin I-B4 from Griffonia simplicifolia to the general visceral afferents in the vagus nerve: a light- and electron-microscopic study in the rat.
        Neurosci. Lett. 1997; 222: 53-56
        • Lloyd K.C.
        • Hölzer H.H.
        • Zittel T.T.
        • Raybould H.E.
        Duodenal lipid inhibits gastric acid secretion by vagal, capsaicin-sensitive afferent pathways in rats.
        Am J. Physiol. 1993; 264: G659-G663
        • Loomis C.W.
        • Yao D.
        • Bieger D.
        Characterization of an esophagocardiovascular reflex in the rat.
        Am J. Physiol. 1997; 272: R1783-R1791
        • Magni F.
        • Bruschi F.
        • Kasti M.
        The afferent innervation of the thymus gland in the rat.
        Brain Res. 1987; 424: 379-385
        • Marsh S.J.
        • Stansfeld C.E.
        • Brown D.A.
        • Davey R.
        • McCarthy D.
        The mechanism of action of capsaicin on sensory C-type neurons and their axons in vitro.
        Neuroscience. 1987; 23: 275-289
        • McCann M.J.
        • Rogers R.C.
        Functional and chemical anatomy of a gastric vago-vagal reflex.
        in: Taché Y. Wingate D.L. Burks T.F. Innervation of the Gut: Pathophysiological Implications. CRC Press, Boca Raton1994: 81-92
        • McNeill D.L.
        • Chandler M.J.
        • Fu Q.G.
        • Foreman R.D.
        Projection of nodose ganglion cells to the upper cervical spinal cord in the rat.
        Brain Res. Bull. 1991; 27: 151-155
        • Mei N.
        Vagal glucoreceptors in the small intestine of the cat.
        J. Physiol. (Lond.). 1978; 282: 485-506
        • Mei N.
        • Garnier L.
        Osmosensitive vagal receptors in the small intestine of the cat.
        J. Auton. Nerv. Syst. 1986; 16: 159-170
        • Melone J.
        Vagal receptors sensitive to lipids in the small intestine of the cat.
        J. Auton. Nerv. Syst. 1986; 17: 231-241
        • Metz W.
        • Forssmann W.G.
        Innervation of the liver in guinea pig and rat.
        Anat. Embryol. (Berl.). 1980; 160: 239-252
        • Miao F.J.
        • Jänig W.
        • Dallman M.F.
        • Benowitz N.L.
        • Heller P.H.
        • Basbaum A.I.
        • Levine J.D.
        Role of vagal afferents and spinal pathways modulating inhibition of bradykinin-induced plasma extravasation by intrathecal nicotine.
        J. Neurophysiol. 1994; 72: 1199-1207
        • Miao F.J.
        • Jänig W.
        • Green P.G.
        • Levine J.D.
        Inhibition of bradykinin-induced synovial plasma extravasation produced by intrathecal nicotine is mediated by the hypothalamopituitary adrenal axis.
        J. Neurophysiol. 1996; 76: 2813-2821
        • Michael G.J.
        • Priestley J.V.
        Differential expression of the mRNA for the vanilloid receptor subtype 1 in cells of the adult rat dorsal root and nodose ganglia and its downregulation by axotomy.
        J. Neurosci. 1999; 19: 1844-1854
        • Middlekauff H.R.
        • Rivkees S.A.
        • Raybould H.E.
        • Bitticaca M.
        • Goldhaber J.I.
        • Weiss J.N.
        Localization and functional effects of adenosine A1 receptors on cardiac vagal afferents in adult rats.
        Am. J. Physiol. 1998; 274: H441-H447
        • Morton D.R.
        • Klassen K.P.
        • Curtis G.M.
        The clinical physiology of the human bronchi. II. The effect of vagus section upon pain of tracheobronchial origin.
        Surgery. 1951; 30: 800-809
        • Nagy J.I.
        • Hunt S.P.
        • Iversen L.L.
        • Emson P.C.
        Biochemical and anatomical observations on the degeneration of peptide-containing primary afferent neurons after neonatal capsaicin.
        Neuroscience. 1981; 6: 1923-1934
        • Nakabayashi H.
        • Nishizawa M.
        • Nakagawa A.
        • Takeda R.
        • Niijima A.
        Vagal hepatopancreatic reflex effect evoked by intraportal appearance of GLP-1.
        Am. J. Physiol. 1996; 271: E808-E813
        • Nance D.M.
        • Hopkins D.A.
        • Bieger D.
        Re-investigation of the innervation of the thymus gland in mice and rats.
        Brain Behav. Immun. 1987; 1: 134-147
        • Nance D.M.
        • Burns J.
        Innervation of the spleen in the rat: evidence for absence of afferent innervation.
        Brain Behav. Immun. 1989; 3: 281-290
        • Neuhuber W.L.
        • Kressel M.
        • Dütsch M.
        • Wörl J.
        • Berthoud H.-R.
        Relationships of IGLEs to enteric glia and neurons in the rat esophagus: further indications of a mechanosensor-local effector role.
        Soc. Neurosci. Abs. 1995; 21: 1633
        • Neuhuber W.L.
        Sensory vagal innervation of the rat esophagus and cardia: a light and electron microscopic anterograde tracing study.
        J. Auton. Nerv. Syst. 1987; 20: 243-255
        • Neuhuber W.L.
        Vagal afferent fibers almost exclusively innervate islets in the rat pancreas as demonstrated by anterograde tracing.
        J. Auton. Nerv. Syst. 1989; 29: 13-18
        • Neuhuber W.L.
        • Clerc N.
        Afferent innervation of the esophagus in cat and rat.
        in: Zenker W. Neuhuber W.L. The Primary Afferent Neuron. Plenum Press, New York1990 (Chapter 9)
        • Neya T.
        • Mizutani M.
        • Yanagihara M.
        • Nakayama S.
        Antidromic activation of vagal and sympathetic afferents does not produce intestinal contractions in dogs.
        Brain Res. 1990; 517: 64-68
        • Niijima A.
        Electrophysiological study on nervous pathway from splanchnic nerve to vagus nerve in rat.
        Am. J. Physiol. 1983; 244: R888-R890
        • Niijima A.
        The afferent discharges from sensors for interleukin 1 beta in the hepatoportal system in the anesthetized rat.
        J. Auton. Nerv. Syst. 1996; 61: 287-291
        • Nishizawa M.
        • Nakabayashi H.
        • Kawai K.
        • Ito T.
        • Kawakami S.
        • Nakagawa A.
        • Niijima A.
        • Uchida K.
        The hepatic vagal reception of intraportal GLP-1 is via receptor different from the pancreatic GLP-1 receptor.
        J. Auton. Nerv. Syst. 2000; 80: 14-21
        • Nishizawa M.
        • Nakabayashi H.
        • Uchida K.
        • Nakagawa A.
        • Niijima A.
        The hepatic vagal nerve is receptive to incretin hormone glucagon-like peptide-1, but not to glucose-dependent insulinotropic polypeptide, in the portal vein.
        J. Auton. Nerv. Syst. 1996; 61: 149-154
        • Norgren R.
        • Smith G.P.
        Central distribution of subdiaphragmatic vagal branches in the rat.
        J. Comp. Neurol. 1988; 273: 207-223
        • Norgren R.
        • Smith G.P.
        A method for selective section of vagal afferent or efferent axons in the rat.
        Am. J. Physiol. 1994; 267: R1136-R1141
        • Nozdrachev A.D.
        • Pulatova M.D.
        • Tursunov Z.T.
        • Chubarova N.I.
        Afferent activity in the vagus and sympathetic pathways of the stomach following exposure of its wall to heat.
        Fiziol. Zh. SSSR Im. I. M. Sechenova. 1977; 63: 896-903
        • Olson B.R.
        • Freilino M.
        • Hoffman G.E.
        c-fos expression in rat brain and brainstem nuclei in response to treatments that alter food intake and gastric motility.
        Mol. Cell Neurosci. 1993; 4: 93-101
        • Phifer C.B.
        • Berthoud H.-R.
        Duodenal nutrient infusions differentially affect sham feeding and Fos expression in rat brain stem.
        Am. J. Physiol. 1998; 274: R1725-R1733
        • Phillips R.J.
        • Baronowsky E.A.
        • Powley T.L.
        Afferent innervation of gastrointestinal tract smooth muscle by the hepatic branch of the vagus.
        J. Comp. Neurol. 1997; 384: 248-270
      1. Phillips, R.J., Powley, T.L., 2000. Tension and stretch receptors in gastrointestinal smooth muscle: reevaluating vagal mechanosensors electrophysiologically. Brain Res. Rev. (Nov./Dec. 2000).

        • Prechtl J.C.
        • Powley T.L.
        Organization and distribution of the rat subdiaphragmatic vagus and associated paraganglia.
        J. Comp. Neurol. 1985; 235: 182-195
        • Prechtl J.C.
        • Powley T.L.
        A light and electron microscopic examination of the vagal hepatic branch of the rat.
        Anat. Embryol. (Berl.). 1987; 176: 115-126
        • Prechtl J.C.
        • Powley T.L.
        The fiber composition of the abdominal vagus of the rat.
        Anat. Embryol. 1990; 181: 101-115
        • Randich A.
        • Gebhart G.F.
        Vagal afferent modulation of nociception.
        Brain Res. Rev. 1992; 17: 77-99
        • Rinaman L.
        • Verbalis J.G.
        • Stricker E.M.
        • Hoffman G.E.
        Distribution and neurochemical phenotypes of caudal medullary neurons activated to express c-fos following peripheral administration of cholecystokinin.
        J. Comp. Neurol. 1993; 338: 475-490
        • Ritter R.C.
        • Brenner L.
        • Yox D.P.
        Participation of vagal sensory neurons in putative satiety signals from upper gastrointestinal tract.
        in: Ritter S. Ritter R.C. Barnes C.D. Neuroanatomy and Physiology of Abdominal Vagal Afferents. CRC Press, Boca Raton, FL1992: 221-248
        • Ritter R.C.
        • Ritter S.
        • Ewart W.R.
        • Wingate D.L.
        Capsaicin attenuates hindbrain neuron responses to circulating cholecystokinin.
        Am. J. Physiol. 1989; 257: R1162-R1168
        • Rodrigo J.
        • de Felipe J.
        • Robles-Chillida E.M.
        • Perez Anton J.A.
        • Mayo I.
        • Gomez A.
        Sensory vagal nature and anatomical access paths to esophagus laminar nerve endings in myenteric ganglia. Determination by surgical degeneration methods.
        Acta Anat. 1982; 112: 47-57
        • Sato M.
        • Koyano H.
        Autoradiographic study on the distribution of vagal afferent nerve fibers in the gastroduodenal wall of the rabbit.
        Brain Res. 1987; 400: 101-109
        • Sauter J.-F.
        • Niijima A.
        • Berthoud H.-R.
        • Jeanrenaud B.
        Vagal neurons and pathways to the rat’s lower viscera: an electrophysiological study.
        Brain Res. Bull. 1983; 11: 487-491
        • Saxon D.W.
        • Hopkins D.A.
        Efferent and collateral organization of paratrigeminal nucleus projections: an anterograde and retrograde tracer study in the rat.
        J. Comp. Neurol. 1998; 402: 93-110
        • Schuligoi R.
        • Jocic M.
        • Heinemann A.
        • Schoninkle E.
        • Pabst M.A.
        • Holzer P.
        Gastric acid-evoked c-fos messenger RNA expression in rat brainstem is signaled by capsaicin-resistant vagal afferents.
        Gastroenterology. 1998; 115: 649-660
        • Sengupta J.N.
        • Hummel T.
        • Gebhart G.F.
        Characterization of distention-sensitive vagal afferent fibers innervating the stomach of the rat.
        Soc. Neurosci. Abs. 1993; 19: 513
        • Springall D.R.
        • Cadieux A.
        • Oliveira H.
        • Su H.
        • Royston D.
        • Polak J.M.
        Retrograde tracing shows that CGRP-immunoreactive nerves of rat trachea and lung originate from vagal and dorsal root ganglia.
        J. Auton. Nerv. Syst. 1987; 20: 155-166
        • Sved A.F.
        • Curtis J.T.
        Amino acid neurotransmitters in nucleus tractus solitarius: an in vivo microdialysis study.
        J. Neurochem. 1993; 61: 2089-2098
        • Szallasi A.
        Autoradiographic visualization and pharmacological characterization of vanilloid (capsaicin) receptors in several species, including man.
        Acta Physiol. Scand. Suppl. 1995; 629: 1-68
        • Talman W.T.
        Neuroactive substances in the control of cardiovascular and visceral responses: an overview.
        in: Barraco R. Nucleus of the Solitary Tract. CRC Press, Boca Raton, FL1994: 233-244
        • Ter Horst G.J.
        • De Boer P.
        • Luiten P.G.
        • Van Willingen J.D.
        Ascending projections from the solitary tract nucleus to the hypothalamus. A Phaseolus vulgaris lectin tracing study in the rat.
        Neuroscience. 1989; 31: 785-789
        • Thiefin G.
        • Raybould H.E.
        • Leung F.W.
        • Taché Y.
        • Guth P.H.
        Capsaicin-sensitive afferent fibers contribute to gastric mucosal blood flow response to electrical vagal stimulation.
        Am. J. Physiol. 1990; 259: G1037-G1043
        • Tiniakos D.G.
        • Lee J.A.
        • Burt A.D.
        Innervation of the liver: morphology and function.
        Liver. 1996; 16: 151-160
        • Traub R.J.
        • Sengupta J.N.
        • Gebhart G.F.
        Differential c-fos expression in the nucleus of the solitary tract and spinal cord following noxious gastric distention in the rat.
        Neuroscience. 1996; 74: 873-884
        • Tsubomura T.
        • Okamoto T.
        • Kurahashi K.
        • Fujiwara M.
        Gastric excitation by stimulation of the vagal trunk after chronic supranodose vagotomy in cats.
        J. Pharmacol. Exp. Ther. 1987; 241: 650-654
        • Van Lommel A.
        • Lauweryns J.M.
        • Berthoud H.-R.
        Pulmonary neuroepithelial bodies are innervated by vagal afferent nerves: and investigation with in vivo anterograde DiI tracing and confocal microscopy.
        Anat. Embryol. (Berl.). 1998; 197: 325-330
        • Walls E.K.
        • Wang F.B.
        • Holst M.C.
        • Phillips R.J.
        • Voreis J.S.
        • Perkins A.R.
        • Pollard L.E.
        • Powley T.L.
        Selective vagal rhizotomies: a new dorsal surgical approach used for intestinal deafferentations.
        Am. J. Physiol. 1995; 269: R1279-R1288
        • Watkins L.R.
        • Wiertelak E.P.
        • Goehler L.E.
        • Mooney-Heiberger K.
        • Martinez J.
        • Furness L.
        • Smith K.P.
        • Maier S.F.
        Neurocircuitry of illness-induced hyperalgesia.
        Brain Res. 1994; 639: 283-299
        • Watkins L.R.
        • Wiertelak E.P.
        • Goehler L.E.
        • Smith K.P.
        • Martin D.
        • Maier S.F.
        Characterization of cytokine-induced hyperalgesia.
        Brain Res. 1994; 654: 15-26
        • Williams R.M.
        • Berthoud H.-R.
        • Stead R.H.
        Vagal afferent nerve fibres contact mast cells in rat small intestinal mucosa.
        Neuroimmunomodulation. 1997; 4: 266-270
        • Willing A.E.
        • Berthoud H.-R.
        Gastric distension-induced c-fos expression in catecholaminergic neurons of rat dorsal vagal complex.
        Am. J. Physiol. 1997; 272: R59-R67
        • Willis A.
        • Mihalevich M.
        • Neff R.A.
        • Mendelowitz D.
        Three types of postsynaptic glutamatergic receptors are activated in DMNX neurons upon stimulation of NTS.
        Am. J. Physiol. 1996; 271: R1614-R1619
        • Zagorodnyuk V.
        • Brookes S.
        Transduction sites of vagal mechanoreceptors in the gut.
        J. Neurosci. 2000; (In press)
        • Zheng H.
        • Kelly L.
        • Patterson L.M.
        • Berthoud H.-R.
        Effect of brain stem NMDA-receptor blockade by MK-801 on behavioral and fos responses to vagal satiety signals.
        Am. J. Physiol. 1999; 277: R1104-R1111
        • Zheng H.
        • Lauve A.
        • Patterson L.M.
        • Berthoud H.-R.
        Limited excitatory local effector function of gastric vagal afferent intraganglionic terminals in rats.
        Am. J. Physiol. 1997; 273: G661-G669
        • Zhuo H.
        • Ichikawa H.
        • Helke C.J.
        Neurochemistry of the nodose ganglion.
        Prog. Neurobiol. 1997; 52: 79-107
        • Zittel T.T.
        • DeGiorgio R.
        • Sternini C.
        • Raybould H.E.
        Fos protein expression in the nucleus of the solitary tract in response to intestinal nutrients in awake rats.
        Brain Res. 1994; 663: 266-270