Advertisement
Review| Volume 85, ISSUE 1-3, P18-25, December 20, 2000

Download started.

Ok

Neuronal circuitries involved in thermoregulation

      Abstract

      The body temperature of homeothermic animals is regulated by systems that utilize multiple behavioral and autonomic effector responses. In the last few years, new approaches have brought us new information and new ideas about neuronal interconnections in the thermoregulatory network. Studies utilizing chemical stimulation of the preoptic area revealed both heat loss and production responses are controlled by warm-sensitive neurons. These neurons send excitatory efferent signals for the heat loss and inhibitory efferent signals for the heat production. The warm-sensitive neurons are separated and work independently to control these two opposing responses. Recent electrophysiological analysis have identified some neurons sending axons directly to the spinal cord for thermoregulatory effector control. Included are midbrain reticulospinal neurons for shivering and premotor neurons in the medulla oblongata for skin vasomotor control. As for the afferent side of the thermoregulatory network, the vagus nerve is recently paid much attention, which would convey signals for peripheral infection to the brain and be responsible for the induction of fever. The vagus nerve may also participate in thermoregulation in afebrile conditions, because some substances such as cholecyctokinin and leptin activate the vagus nerve. Although the functional role for this response is still obscure, the vagus may transfer nutritional and/or metabolic signals to the brain, affecting metabolism and body temperature.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Autonomic Neuroscience: Basic and Clinical
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Amir S.
        Activation of brown adipose tissue thermogenesis by chemical stimulation of the posterior hypothalamus.
        Brain Res. 1990; 534: 303-308
        • Amir S.
        Intra-ventromedial hypothalamic injection of glutamate simulates brown adipose tissue thermogenesis in the rat.
        Brain Res. 1990; 511: 341-344
        • Amir S.
        Stimulation of the paraventricular nucleus with glutamate activates interscapular brown adipose tissue thermogenesis in rats.
        Brain Res. 1990; 508: 152-155
        • Appenzeller O.
        The Autonomic Nervous System. Elsevier, Amsterdam1990
        • Asami A.
        • Asami T.
        • Hori T.
        • Kiyohara T.
        • Nakashima T.
        Thermally-induced activities of the mesencephalic reticulospinal and rubrospinal neurons in the rat.
        Brain Res. Bull. 1988; 20: 387-398
        • Asami T.
        • Hori T.
        • Kiyohara T.
        • Nakashima T.
        Convergence of thermal signals on the reticulospinal neurons in the midbrain, pons and medulla oblongata.
        Brain Res. Bull. 1988; 20: 581-596
        • Bamshad M.
        • Song C.K.
        • Bartness T.J.
        CNS origins of the sympathetic nervous system outflow to brown adipose tissue.
        Am. J. Physiol. 1999; 276: R1569-R1578
        • Banet M.
        • Hensel H.
        • Liebermann H.
        The central control of shivering and non-shivering thermogenesis in the rat.
        J. Physiol. (Lond.). 1978; 283: 569-584
        • Barker J.L.
        • Carpenter D.O.
        Thermosensitivity of neurons in the sensorimotor cortex of the cat.
        Science. 1970; 169: 597-598
        • Benzinger T.H.
        • Pratt A.W.
        • Kitzinger C.
        The thermostatic control of human metabolic heat production.
        Proc. Natl. Acad. Sci. USA. 1961; 47: 730-739
        • Berner N.J.
        • Heller H.C.
        Does the preoptic anterior hypothalamus receive thermoafferent information?.
        Am. J. Physiol. 1998; 274: R9-R18
      1. Bligh J. Neural Models of Temperature Regulation. Temperature Regulation in Mammals and Other Vertebrates. North-Holland, Amsterdam1973: 174-191
        • Boulant J.A.
        Hypothalamic control of thermoregulation. Neurophysiological basis.
        in: Morgane P.J. Panksepp J. Handbook of the Hypothalamus. Vol. 3. Marcel Dekker, New York1980: 1-82 (Part A)
        • Boulant J.A.
        Hypothalamic neurons regulating body temperature.
        in: Fregley M.J. Blatteis C.M. Handbook of Physiology. Environmental Physiology. Oxford University Press, New York1996: 105-126 (Section 4)
        • Boulant J.A.
        • Hardy J.D.
        The effect of spinal and skin temperatures on the firing rate and thermosensitivity of preoptic neurones.
        J. Physiol. (Lond.). 1974; 240: 639-660
        • Carlisle H.
        Behavioral significance of hypothalamic temperature-sensitive cells.
        Nature. 1966; 209: 1324-1325
        • Carlisle H.
        The effects of preoptic and anterior hypothalamic lesions on behavioral thermoregulation in the cold.
        J. Comp. Physiol. Psychol. 1969; 69: 391-402
        • Chen X.-M.
        • Hosono T.
        • Yoda T.
        • Fukuda Y.
        • Kanosue K.
        Efferent projection from the preoptic area for the control of non-shivering thermogenesis in rats.
        J. Physiol. (Lond.). 1998; 512: 883-892
        • Craig A.D.
        Pain, temperature, and the sense of the body.
        in: Franzen O. Johansson R. Terenius L. Somesthesis and the Neurobiology of the Somatosensory Cortex. Birkhauser, Basel1996: 27-39
        • Craig A.D.
        • Chen K.
        • Bandy D.
        • Reiman E.M.
        Thermosensory activation of insular cortex.
        Nat. Neurosci. 2000; 3: 184-190
        • Doring H.
        • Schwarzer K.
        • Nuesslein-Hildesheim B.
        • Schmidt I.
        Leptin selectively increases energy expenditure of food-restricted lean mice.
        Int. J. Obesity. 1998; 22: 83-88
        • Freeman P.H.
        • Wellman P.J.
        Brow adipose tissue thermogenesis induced by low level electrical stimulation of hypothalamus in rats.
        Brain Res. Bull. 1987; 18: 7-11
        • Geiser F.
        • Körtner G.
        • Schmidt I.
        Leptin increases energy expenditure of a marsupial by inhibition of daily torpor.
        Am. J. Physiol. 1998; 275: R1627-R1632
        • Grundy D.
        • Bagaev V.
        • Hilsley K.
        Inhibition gastric mechanoreceptor discharge by cholecyctokinin in the rat.
        Am. J. Physiol. 1995; 268: G355-G360
        • Hainsworth F.R.
        • Stricker E.M.
        Salivary cooling by rats in the heat.
        in: Hardy J.D. Gagge A.P. Stolwijk J.A.J. Physiological and Behavioural Temperature Regulation. C.C. Thomas, Springfield, IL1970: 611-626
        • Halvorson I.
        • Thornhill J.
        Posterior hypothalamic stimulation of anesthetized normothermic and hypothermic rats evokes shivering thermogenesis.
        Brain Res. 1993; 61: 208-215
        • Hammel H.T.
        Regulation of internal body temperature.
        Annu. Rev. Physiol. 1968; 30: 641-710
        • Hemingway A.
        Shivering.
        Physiol. Rev. 1963; 43: 397-422
        • Holt S.J.
        • Wheal H.V.
        • York D.A.
        Hypothalamic control of brown adipose tissue in Zucker lean and obese rats. Effects of electrical stimulation of the ventromedial nucleus and other hypothalamic centres.
        Brain Res. 1987; 405: 227-233
        • Hori T.
        An update on thermosensitive neurons in the brain: from cellular biology to thermal and non-thermal homeostatic functions.
        Jpn. J. Physiol. 1991; 41: 1-22
        • Hübschle T.
        • McKinley M.J.
        • Oldfield B.J.
        Efferent connections of the lamina terminalis, the preoptic area and the insular cortex to submandibular and sublingual gland of the rat traced with pseudorabies virus.
        Brain Res. 1998; 806: 219-231
        • Imai-Matsumura K.
        • Nakayama T.
        The central efferent mechanism of brown adipose tissue thermogenesis induced by preoptic cooling.
        Can. J. Physiol. Pharmacol. 1987; 65: 1299-1303
        • Ishikawa Y.
        • Nakayama T.
        • Kanosue K.
        • Matsumura K.
        Activation of central warm-sensitive neurons and the tail vasomotor response in rats during brain and scrotal thermal stimulation.
        Pflügers Arch. 1984; 400: 222-227
        • IUPS Thermal Commission
        Glossary of terms for thermal physiology.
        Pflügers Arch. 1987; 410: 567-587
        • Kanosue K.
        • Hosono T.
        • Yanase-Fujiwara M.
        Hypothalamic network for thermoregulatory vasomotor activity.
        Am. J. Physiol. 1994; 267: R283-R388
        • Kanosue K.
        • Hosono T.
        • Yoda T.
        • Liu S.
        • Yoshida K.
        Neuronal network underlying thermoregulatory vasomotor control.
        in: Shibata M. Iriki K. Kanosue K. Inaba Y. 1998 International Symposium on Human Biometeorology IPEC, Tokyo1999: 70-73
        • Kanosue K.
        • Hosono T.
        • Zhang Y.-H.
        • Chen X.-M.
        Neuronal networks controlling thermoregulatory effectors.
        Prog. Brain Res. 1998; 115: 49-62
        • Kanosue K.
        • Matsuo R.
        • Tanaka H.
        • Nakayama T.
        Effect of body temperature on salivary reflexes in rats.
        J. Auton. Nerv. Syst. 1986; 16: 233-237
        • Kanosue K.
        • Nakayama T.
        • Ishikawa Y.
        • Hosono T.
        • Kaminaga T.
        • Shosaku A.
        Responses of thalamic and hypothalamic neurons to scrotal warming in rats: Non-specific responses?.
        Brain Res. 1985; 328: 207-213
        • Kanosue K.
        • Nakayama T.
        • Tanaka H.
        • Yanase M.
        • Yasuda H.
        Modes of action of local hypothalamic and skin thermal stimulations on salivary secretion in rats.
        J. Physiol. (Lond.). 1990; 424: 459-471
        • Kanosue K.
        • Zhang Y.-H.
        • Yanase-Fujiwara M.
        • Hosono T.
        Hypothalamic network for thermoregulatory shivering.
        Am. J. Physiol. 1994; 267: R275-R282
        • Kobayashi A.
        • Osaka T.
        • Namba Y.
        • Inoue S.
        • Kimura S.
        CGRP microinjection into the ventromedial or dorsomedial hypothalamic nucleus activates heat production.
        Brain Res. 1999; 827: 176-184
        • Kurosawa M.
        • Bucinskaite V.
        • Taniguchi T.
        • Miyasaka K.
        • Funakoshi A.
        • Lundeberg T.
        Response of the gastric vagal afferent activity to cholecyctokinin in rats lacking type A cholecystokinin receptors.
        J. Auton. Nerv. Syst. 1999; 75: 51-59
        • McAllen R.
        • Dampney R.
        The selectivity of descending vasomotor control by subretrofacial neurons.
        Prog. Brain Res. 1989; 81: 233-242
        • McAllen R.M.
        • May C.N.
        Effects of preoptic warming on subretrofacial and cutaneous vasoconstrictor nerurons in anaesthetized cats.
        J. Physiol. (Lond.). 1994; 481: 719-730
        • Morrison S.F.
        RVLM and raphe differentially regulate sympathetic outflows to splanchnic and brown adipose tissue.
        Am. J. Physiol. 1999; 276: R962-R973
        • Morrison S.F.
        • Sved A.F.
        • Passerin A.M.
        GABA-mediated inhibition of raphe pallidus neurons regulates sympathetic outflow to brown adipose tissue.
        Am. J. Physiol. 1999; 276: R290-R297
        • Nakayama T.
        Thermosensitive neurons in the brain.
        Jpn. J. Physiol. 1985; 35: 375-389
        • Nakayama T.
        • Eisenman J.S.
        • Hardy J.D.
        Single unit activity of anterior hypothalamus during local heating.
        Science. 1961; 134: 560-561
        • Nakayama T.
        • Kanosue K.
        • Tanaka H.
        • Kaminaga T.
        Thermally induced salivary secretion in anesthetized rats.
        Pflügers Arch. 1986; 406: 351-355
        • Norgren R.
        • Smith G.P.
        Central distribution of subdiaphragmatic vagal branches in the rat.
        J. Comp. Neurol. 1988; 273: 207-223
        • Perkins M.N.
        • Rothwell N.J.
        • Stock M.J.
        • Stone T.W.
        Biphasic brown fat temperature responses to hypothalamic stimulation in rats.
        Am. J. Physiol. 1994; 266: R328-R337
        • Rathner J.A.
        • McAllen R.M.
        Differential control of sympathetic drive to the rat tail artery and kidney by medullary premotor cell groups.
        Brain Res. 1999; 834: 196-199
        • Rawson B.O.
        • Quick K.P.
        Localization of intra-abdominal thermoreceptors in the ewe.
        J. Physiol. (Lond.). 1972; 222: 665-677
        • Ricard J.
        • Koh E.T.
        Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and the other forebrain structures in the rat.
        Brain Res. 1978; 153: 1-26
        • Riedel W.
        Warm receptors in the dorsal abdominal wall of the rabbit.
        Pflügers Arch. 1976; 361: 205-206
        • Roberts W.W.
        • Mooney R.D.
        Brain areas controlling thermoregulatory grooming, prone extension, locomotion, and tail vasodilation in rats.
        J. Comp. Physiol. Psychol. 1974; 86: 470-480
        • Romonovsky A.A.
        • Kulchinsky V.A.
        • Simon C.T.
        • Sugimoto N.
        • Székely M.
        Febrile responsiveness of vagotomized rats is suppressed even in the absence of malnutrition.
        Am. J. Physiol. 1997; 273: R407-R413
        • Sakurada S.
        • Shido O.
        • Sugimoto N.
        • Hiratsuka Y.
        • Yoda T.
        • Kanosue K.
        Autonomic and behavioral thermoregulation in starved rats.
        J. Physiol. (Lond.). 2000; 526: 417-424
        • Satinoff E.
        Behavioral thermoregulation in response to local cooling of the rat brain.
        Am. J. Physiol. 1964; 206: 1389-1394
        • Satinoff E.
        • Rutstein J.
        Behavioral thermoregulation in rats with anterior hypothalamic lesions.
        J. Comp. Physiol. Psychol. 1970; 71: 77-82
        • Scales W.E.
        • Kluger M.J.
        Effect of antipyretic drugs on circadian rhythm in body temperature in rats.
        Am. J. Physiol. 1987; 253: R306-R313
        • Sehic E.
        • Blatteis C.M.
        Blockade of lipopolysaccharide-induced fever by subdiaphragmatic vagotomy in guinea pigs.
        Brain Res. 1996; 726: 160-166
        • Shibata M.
        • Benzi R.H.
        • Seydoux J.
        • Girardier L.
        Hyperthermia induced by pre-pontine knifecut: evidence for a tonic inhibition of non-shivering thermogenesis in anaesthetized rat.
        Brain Res. 1987; 436: 273-282
        • Shibata M.
        • Iriki M.
        • Arita J.
        • Kiyohara T.
        • Nakashima T.
        • Miyata S.
        • Matsukawa T.
        Procaine microinjection into the lower midbrain increases brawn fat and body temperatures in anesthetized rats.
        Brain Res. 1996; 716: 171-179
        • Shibata M.
        • Uno T.
        • Hashimoto M.
        Disinhibition of lower midbrain neurons enhances non-shivering thermogenesis in anesthetized rats.
        Brain Res. 1999; 833: 242-250
        • Shibata M.
        • Uno T.
        • Hashimoto M.
        Neurons in the lower midbrain tonically inhibit non-shivering thermogenesis through their influence on inferior olivary neurons in anesthetized rats.
        J. Therm. Biol. 2000; 24: 365-368
        • Shiraishi T.
        • Sasaki K.
        • Nijima A.
        • Oomura Y.
        Leptin effects on feeding-related hypothalamic and peripheral neuronal activities in normal and obese rats.
        Nutrition. 1999; 15: 576-579
        • Simon E.
        • Klussmann F.W.
        • Rautenberg W.
        • Kosaka M.
        Kältezittern bei narkotisierten spinalen Hunden.
        Plügers Arch. 1966; 291: 187-204
        • Simon E.
        Temperature regulation: The spinal cord as a site of extrahypothalamic thermoregulatory functions.
        Rev. Physiol. Biochem. Pharmacol. 1974; 71: 1-76
        • Stuart D.G.
        • Kawamura Y.
        • Hemingway A.
        Activation and suppression of shivering during septal and hypothalamic stimulation.
        Exp. Neurol. 1961; 4: 485-506
        • Stuart D.G.
        • Kawamura Y.
        • Hemingway A.
        • Price W.M.
        Effects of septal and hypothalamic lesions on shivering.
        Exp. Neurol. 1962; 5: 335-347
        • Székely M.
        • Szelényi Z.
        • Balaskó M.
        Cholecystokinin participates in the mediation of fever.
        Pflügers Arch. 1994; 428: 671-673
        • Székely M.
        • Szelényi Z.
        • Kis A.
        Fasting and re-feeding: alterations in resting metabolic rate and body temperature.
        in: Nielsen-Johannsen B. Nielsen R. Thermal Physiology 1997 Raven Press, New York1997: 235-238
        • Székely M.
        • Romonovsky A.A.
        Pyretic and antipyretic signals within and without fever: a possible interplay.
        Med. Hypothes. 1998; 50: 213-218
        • Tanaka H.
        • Kanosue K.
        • Nakayama T.
        • Shen Z.
        Grooming, body extension, and tail vasomotor responses induced by hypothalamic warming at different ambient temperatures in rats.
        Physiol. Behav. 1986; 38: 145-151
        • Thornhill J.
        • Halvorson I.
        Brown adipose tissue thermogenetic responses of rats induced by central stimulation: effect of age and cold acclimation.
        J. Physiol. (Lond.). 1990; 426: 317-333
        • Watkins L.R.
        • Goehler L.E.
        • Rolton J.K.
        • Tartaglia N.
        • Silbert L.
        • Martin D.
        • Maier S.F.
        Blockade of interleukin-1 induced hyperthermia by subdiaphragmatic vagotomy: evidence for vagal mediation of immuno-brain communication.
        Neurosci. Lett. 1995; 183: 27-31
        • Woods A.
        • Stock M.
        Biphasic brown fat temperature responses to hypothalamic stimulation in rats.
        Am. J. Physiol. 1994; 266: R328-R337
        • Yanase M.
        • Kanosue K.
        • Yasuda H.
        • Tanaka H.
        Salivary secretion and grooming behavior during heat exposure in freely moving rats.
        J. Physiol. 1991; 432: 585-592
        • Yoda T.
        • Crawshaw L.I.
        • Yoshida K.
        • Liu S.
        • Hosono T.
        • Shido O.
        • Sakurada S.
        • Fukuda Y.
        • Kanosue K.
        Effects of food deprivation on daily changes in body temperature and behavioral thermoregulation in rats.
        Am. J. Physiol. 2000; 278: R134-R139
        • Zhang Y.-H.
        • Yanase-Fujiwara M.
        • Hosono T.
        • Kanosue K.
        Warm and cold signals from the preoptic area: which contribute more to the control of shivering in rats.
        J. Physiol. (Lond.). 1995; 485: 195-202
        • Zhang Y.-H.
        • Hosono T.
        • Yanase-Fujiwara M.
        • Chen X.-M.
        • Kanosue K.
        Effect of midbrain stimulation on thermoregulatory vasomotor responses in rats.
        J. Physiol. 1997; 503: 177-186