Advertisement

Vagal immune-to-brain communication: a visceral chemosensory pathway

      Abstract

      The immune system operates as a diffuse sensory system, detecting the presence of specific chemical constituents associated with dangerous micro-organisms, and then signalling the brain. In this way, immunosensation constitutes a chemosensory system. Several submodalities of this sensory system function as pathways conveying immune-related information, and can be classified as either primarily brain barrier associated or neural. The vagus nerve provides the major neural pathway identified to date. The initial chemosensory transduction events occur in immune cells, which respond to specific chemical components expressed by dangerous micro-organisms. These immune chemosensory cells release mediators, such as cytokines, to activate neural elements, including primary afferent neurons of the vagal sensory ganglia. Primary afferent activation initiates local reflexes (e.g. cardiovascular and gastrointestinal) that support host defense. In addition, at least three parallel pathways of ascending immune-related information activate specific components of the illness response. In this way, immunosensory systems represent highly organized and coherent pathways for activating host defense against infection.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Autonomic Neuroscience: Basic and Clinical
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Adriaensen D.
        • Timmermans J.-P.
        • Brouns I.
        • Berthoud H.-R.
        • Neuhuber W.L.
        • Scheuermann D.W.
        Pulmonary intraepithelial vagal nodose afferent nerve terminals are confined to neuroepithelial bodies: an anterograde tracing and confocal microscopy study in adult rats.
        Cell Tissue Res. 1998; 293: 395-405
        • Alden M.
        • Besson J.-M.
        • Bernard J.-F.
        Organization of the efferent projections from the pontine parabrachial area to the bed nucleus of the stria terminalis and neighboring regions: a PHA-L study in the rat.
        J. Comp. Neurol. 1994; 341: 289-314
        • Altschuler S.M.
        • Boa X.
        • Beiger D.
        • Hopkins D.A.
        • Miselis R.R.
        Viscerotopic representation of the upper alimentary tract in the rat: sensory ganglia and nuclei of the solitary and spinal trigeminal tracts.
        J. Comp. Neurol. 1989; 283: 248-268
      1. Andrews P.L.R. Lawes I.N.C. A Protective Role For Vagal Afferents: An Hypothesis. Neuroanatomy and Physiology of Abdominal Vagal Afferents. CRC Press, London1992: 279-302
        • Banchereau J.
        • Steinman R.M.
        Dendritic cells and the control of immunity.
        Nature. 1998; 392: 245-252
        • Bernard J.-F.
        • Alden M.
        • Besson J.-M.
        The organization of the efferent projections from the pontine parabrachial area to the amygdaloid complex: a Phaseolus vulgaris leucoagglutinin (PHA-L) study in the rat.
        J. Comp. Neurol. 1994; 341: 289-314
        • Berthoud H.R.
        • Kressel M.
        • Raybould H.E.
        • Neuhuber W.L.
        Vagal sensors in the rat duodenal mucosa: distribution and structure as revealed by in vivo DiI-tracing.
        Anat. Embryol. 1995; 191: 203-212
        • Berthoud H.-R.
        • Kressel M.
        • Neuhuber W.L.
        Vagal afferent innervation of the rat abdominal paraganglia as revealed by anterograde DiI-tracing and confocal microscopy.
        Acta Anat. 1995; 152: 127-132
        • Besedovsky H.O.
        • del Rey A.
        Immune-neuroendocrine circuits: integrative role of cytokines.
        Front. Neuroendocrinol. 1992; 13: 61-94
        • Bester H.
        • Bourgeais L.
        • Villanueva L.
        • Besson J.M.
        • Bernard J.F.
        Differential projections to the intralaminar and gustatory thalamus from the parabrachial area: a PHA-L study in the rat.
        J. Comp. Neurol. 1999; 405: 421-449
        • Blatteis C.M.
        • Sehic E.
        Circulating pyrogen signaling of the brain.
        Ann. NY Acad. Sci. 1997; 813: 445-447
        • Cella M.
        • Sallusto F.
        • Lanzavecchia P.
        Origin, maturation, and antigen-presenting function of dendritic cells.
        Curr. Opin. Immunol. 1997; 9: 10-16
        • Day H.E.W.
        • Akil H.
        Differential pattern of c-fos mRNA in rat brain following central and systemic administration of interleukin-1-beta: Implications for mechanism of action.
        Neuroendocrinology. 1996; 63: 207-218
        • Day H.E.W.
        • Curran E.J.
        • Watson Jr., S.J.
        • Akil H.
        Distinct neurochemical populations in the rat central nucleus of the amygdala and bed nucleus of the stria terminalis: evidence for their selective activation by interleukin-1b.
        J. Comp. Neurol. 1999; 413: 113-128
        • Dunn A.J.
        Role of cytokines in infection-induced stress.
        Ann. NY Acad. Sci. 1993; 697: 189-202
        • Ek M.
        • Kurosawa M.
        • Lundeberg T.
        • Ericsson A.
        Activation of vagal afferents after intravenous injection of interleukin-1β: role of endogenous prostaglandins.
        J. Neurosci. 1998; 18: 9471-9479
        • Elmquist J.K.
        • Saper S.B.
        Activation of neurons projecting to the paraventricular hypothalamic nucleus by intravenous lipopolysaccharide.
        J. Comp. Neurol. 1996; 374: 315-331
        • Elmquist J.K.
        • Scammell T.E.
        • Jacobson C.D.
        • Saper C.B.
        Distribution of Fos-like immunoreactivity in the rat brain following intravenous lipopolysaccharide administration.
        J. Comp. Neurol. 1996; 371: 85-103
        • Elmquist J.K.
        • Scammell T.E.
        • Saper C.B.
        Mechanisms of CNS response to systemic immune challenge: the febrile response.
        Trends Neurosci. 1997; 20: 565-570
        • Ericsson A.
        • Kovacs K.J.
        • Sawchenko P.E.
        A functional neuroanatomical analysis of central pathways subserving the effects of interleukin-1 on stress-related neuroendocrin neurons.
        J. Neurosci. 1994; 14: 897-913
        • Ericsson A.
        • Arias C.
        • Sawchenko P.E.
        Evidence for an intramedullary prostaglandin-dependent mechanism in the activation of stress-related neuroendocrine circuitry by intravenous interleukin-1.
        J. Neurosci. 1997; 17: 7166-7179
        • Felton D.L.
        • Livnat S.
        • Felton S.Y.
        • Carlson S.L.
        • Bellinger D.L.
        • Yeh P.
        Sympathetic innervation of lymph nodes in mice.
        Brain Res. Bull. 1984; 13: 693-696
        • Fink T.
        • Weihe E.
        Multiple neuropeptides in nerves supplying mammalian lymph nodes: messenger candidates for sensory and autonomic neuroimmunomodulation.
        Neurosci. Lett. 1988; 19: 39-44
        • Fischer A.
        • McGregor G.P.
        • Saria A.
        • Philippin B.
        • Kummer W.
        Induction of tachykinin gene and peptide expression in guinea-pig nodose primary afferent neurons by allergic airway inflammation.
        J. Clin. Invest. 1996; 98: 2284-2291
        • Fleshner M.
        • Goehler L.E.
        • Schwartz B.A.
        • McGorry M.
        • Martin D.
        • Watkins L.R.
        • Maier S.F.
        Thermogenic and corticosterone responses to intravenous cytokines (IL-1β and TNF-α) are attenuated by subdiaphragmatic vagotomy.
        J. Neuroimmunol. 1998; 86: 134-141
        • Freedman L.J.
        • Cassell M.D.
        Thalamic afferents of the rat infralimbic and lateral agranular cortices.
        Brain Res. Bull. 1991; 26: 957-964
        • Fulwiler C.E.
        • Saper C.B.
        Subnuclear organization in the efferent connections of the parabrachial nucleus in the rat.
        Brain Res. Rev. 1984; 7: 229-259
        • Gaykema R.P.A.
        • Dijkstra I.
        • Tilders F.J.H.
        Subdiaphragmatic vagotomy suppresses endotoxin-induced activation of the hypothalamic corticotropin-releasing hormones neurons and ACTH secretion.
        Endocrinology. 1995; 136: 4717-4720
        • Gaykema R.P.A.
        • Goehler L.E.
        • Tilders F.J.H.
        • Bol J.G.M.
        • McGorry M.M.
        • Maier S.F.
        • Watkins L.R.
        Bacterial endotoxin induces Fos immunoreactivity in primary afferent neurons of the vagus nerve.
        Neuroimmunomodulation. 1998; 5: 234-240
        • Gaykema R.P.A.
        • Goehler L.E.
        • Armstrong C.B.
        • Khorsand J.
        • Maier S.F.
        • Watkins L.R.
        Differential FOS expression in rat brain induced by lipopolysaccharide and staphylococcal enterotoxin B.
        Neuroimmunomodulation. 1999; 6: 220
        • Goehler L.E.
        • Relton J.K.
        • Dripps D.
        • Keichle R.
        • Tartaglia N.
        • Maier S.F.
        • Watkins L.R.
        Vagal paraganglia bind biotinylated interleukin-1 receptor antagonist: A possible mechanism for immune-to-brain communication.
        Brain Res. Bull. 1997; 43: 357-364
        • Goehler L.E.
        • Gaykema R.P.A.
        • Hammack S.E.
        • Maier S.F.
        • Watkins L.R.
        Interleukin-1 induces c-Fos immunoreactivity in primary afferent neurons of the vagus nerve.
        Brain Res. 1998; 804: 306-310
        • Goehler L.E.
        • Gaykema R.P.A.
        • Khorsand J.
        • Kleiner J.
        • Schwartz B.A.
        • Maier S.F.
        • Watkins L.R.
        Staphylococcal enterotoxin B induces c-Fos immunoreactivity in rat nervous system.
        Soc. Neurosci. Abstr. 1998; 24: 1611
        • Goehler L.E.
        • Gaykema R.P.A.
        • Kleiner J.
        • Hinde J.L.
        • Hansen M.K.
        • Maier S.F.
        • Watkins L.R.
        Intraperitoneal Staphylococcus enterotoxin B (SEB) causes fever and serum corticosterone elevation in rats.
        Soc. Neurosci. Abstr. 1999; 25: 1447
        • Goehler L.E.
        • Gaykema R.P.A.
        • Nguyen K.T.
        • Lee J.L.
        • Tilders F.J.H.
        • Maier S.F.
        • Watkins L.R.
        Interleukin-1β in immune cells of the abdominal vagus nerve: an immune to nervous system link?.
        J. Neurosci. 1999; 17: 2799-2806
        • Goerdt S.
        • Kodelja V.
        • Schmuth M.
        • Orefanos C.E.
        • Sorg C.
        The mononuclear phagocyte-dendritic cell dichotomy: myths, facts, and a revised concept.
        Clin. Exp. Immunol. 1996; 105: 1-9
        • Greene R.
        • Fowler J.
        • MacGlashan D.
        • Weinreich D.
        IgE-challenged human lung mast cells excite vagal sensory neurons in vitro.
        J. Appl. Physiol. 1988; 64: 2249-2253
        • Herbert H.
        • Moga M.M.
        • Saper C.B.
        Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat.
        J. Comp. Neurol. 1990; 293: 540-580
        • Herkenham M.
        • Lee H.Y.
        • Baker R.A.
        Temporal and spatial patterns of c-fos mRNA induced by intravenous interleukin-1: A cascade of non-neuronal cellular activation at the blood brain barrier.
        J. Comp. Neurol. 1998; 400: 175-196
        • Hermann G.E.
        • Tovar C.A.
        • Rogers R.C.
        Induction of endogenous tumor necrosis factor-a: suppression of centrally stimulated gastric motility.
        Am. J. Physiol. 1999; 276: R59-R68
        • Kapcala L.P.
        • He J.R.
        • Gao Y.
        • Pieper J.O.
        • DeTolla L.J.
        Subdiaphragmatic vagotomy inhibits intra-abdominal interleukin-1β stimulation of adrenocorticotropin secretion.
        Brain Res. 1996; 728: 247-254
        • Kobierski L.A.
        • Srivastava S.
        • Borsook D.
        Systemic lipopolysaccharide and interleukin-1β activate the interleukin 6: STAT intracellular signaling pathway in neurons of mouse trigeminal ganglion.
        Neurosci. Lett. 2000; 281: 61-64
        • Kopp E.B.
        • Medzhitov R.
        The Toll-receptor family and control of innate immunity.
        Curr. Opin. Immunol. 1999; 11: 13-18
        • LeDoux J.E.
        Emotion: clues from the brain.
        Annu. Rev. Psychol. 1995; 46: 209-235
        • Leon L.R.
        • Conn C.A.
        • Glaccum M.
        • Kluger M.
        IL-1 type I receptor mediates acute phase response to turpentine, but not to lipopolysaccharide, in mice.
        Am. J. Physiol. 1996; 271: R1668-R1675
        • Maier S.F.
        • Wiertelak E.P.
        • Martin D.
        • Watkins L.R.
        Interleukin-1 mediates the behavioral hyperalgesia produced by lithium chloride and endotoxin.
        Brain Res. 1993; 623: 321-324
        • Mascarucci P.
        • Perego C.
        • Terrazzino S.
        • DeSimoni M.G.
        Glutamate release in the nucleus tractus solitarius induced by peripheral lipopolysaccharide and interleukin-1β.
        Neuroscience. 1998; 86: 1285-1290
        • Matsuura S.
        Chemoreceptor properties of glomus tissue found in the carotid region of the cat.
        J. Physiol. (Lond.). 1973; 235: 57-73
        • Matzinger P.
        Tolerance, danger, and the extended family.
        Annu. Rev. Immunol. 1994; 12: 991-1045
        • Medzhitov R.
        • Janeway C.A.
        Innate immunity: impact of the adaptive immune response.
        Curr. Opin. Immunol. 1997; 9: 4-9
        • Moga M.M.
        • Herbert H.
        • Hurley K.M.
        • Yasui Y.
        • Gray T.S.
        • Saper C.B.
        Organization of cortical, basal forebrain, and hypothalamic afferents to the parabrachial nucleus in the rat.
        J. Comp. Neurol. 1990; 295: 624-661
        • Moore K.A.
        • Taylor G.E.
        • Weinreich D.
        Serotonin unmasks functional NK-2 receptors in vagal sensory neurones of the guinea pig.
        J. Physiol. 1999; 514: 111-124
        • Nagura H.
        • Ohtani H.
        • Masuda T.
        • Kimura M.
        • Nakamura S.
        HLA-DR expression on M cells overlaying Peyer’s patches is a common feature of human small intestine.
        Acta Pathol. Jpn. 1991; 41: 818-823
        • Niijima A.
        The afferent discharges from sensors for interleukin-1β in the hepatoportal system in the anesthetized rat.
        J. Auton. Nerv. Syst. 1996; 61: 287-291
        • Popper P.
        • Mantyh C.R.
        • Vigna S.R.
        • Maggio J.E.
        • Mantyh P.W.
        The localization of sensory nerve fibers and receptor binding sites for sensory neuropeptides in canine lymph nodes.
        Peptides. 1988; 9: 257-267
        • Porter M.H.
        • Hrupka B.J.
        • Langhans W.
        • Schwartz G.J.
        Vagal and splanchnic afferents are not necessary for the anorexia produced by peripheral IL-1β, LPS and MDP.
        Am. J. Physiol. 1998; 275: R384-R389
        • Reis e Sousa C.
        • Sher A.
        • Kaye P.
        The role of dendritic cells in the induction and regulation of immunity to microbial infection.
        Curr. Opin. Immunol. 1999; 11: 392-399
        • Reudl C.
        • Reiser C.
        • Bock G.
        • Wick G.
        • Wolf H.
        Phenotypic and functional characterization of CD11c+ dendritic cell population in mouse Peyer’s patches.
        Eur. J. Immunol. 1996; 26: 1801-1806
        • Riche D.
        • De Pomery J.
        • Menetrey D.
        Neuropeptides and catecholamines in efferent projections of the nuclei of the solitary tract in the rat.
        J. Comp. Neurol. 1990; 293: 399-424
        • Romanovsky A.A.
        • Simons C.T.
        • Szekely M.
        • Kulchitsky V.A.
        The vagus nerve in the thermoregulatory response to systemic inflammation.
        Am. J. Physiol. 1997; 273: R407-R413
        • Roozendaal B.
        • Koolhaas J.M.
        • Bohus B.
        Differential effects of lesioning of the central amygdala on the bradycardiac and behavioral response of the rat in relation to conditioned social and solitary stress.
        Behav. Brain Res. 1990; 41: 39-48
        • Ross C.A.
        • Ruggiero D.A.
        • Reis D.J.
        Projections from the nucleus tractus solitarii to the rostral ventrolateral medulla.
        J. Comp. Neurol. 1985; 242: 511-534
        • Ruggiero D.A.
        • Anwar S.
        • Kim J.
        • Glickstein S.B.
        Visceral afferent pathways to the thalamus and olfactory tubercle: behavioral implications.
        Brain Res. 1998; 799: 159-171
        • Sagar S.M.
        • Price K.J.
        • Kasting N.W.
        • Sharp F.R.
        Anatomic patterns of FOS immunostaining in rat brain following systemic endotoxin administration.
        Brain Res. Bull. 1995; 36: 381-392
        • Saper C.B.
        Central autonomic system.
        in: Paxinos G. The Rat Nervous System. 2nd Edition. Academic Press, San Diego1995: 107-135
        • Saper C.B.
        • Breder C.D.
        The neurological basis of fever.
        N. Engl. J. Med. 1994; 330: 1880-1886
        • Saper C.B.
        • Levisohn D.
        Afferent connections of the median preoptic nucleus in the rat: anatomical evidence for a cardiovascular integrative mechanism in the anteroventral third ventricular (AV3V) region.
        Brain Res. 1983; 288: 21-31
        • Schaffar N.
        • Roa H.
        • Kessler J.P.
        • Jean A.
        Immunohistochemical detection of glutamate in rat vagal sensory neurons.
        Brain Res. 1997; 778: 302-308
        • Schwandner R.
        • Dziarski R.
        • Wesche H.
        • Rothe M.
        • Kirschning C.J.
        Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by Toll-like receptor 2.
        J. Biol. Chem. 1999; 274: 17406-17409
        • Scammell T.E.
        • Elmquist J.K.
        • Griffin J.D.
        • Saper C.B.
        Ventromedial preoptic prostaglandin E2 activates fever-producing autonomic pathways.
        J. Neurosci. 1996; 16: 6246-6254
        • Schwartz G.J.
        • Salorio C.F.
        • Skoglund C.
        • Moran T.H.
        Gut vagal afferent lesions increase meal size but do not block preload induced feeding suppression.
        Am. J. Physiol. 1999; 276: R1623-R1629
        • Sehic E.
        • Blatteis C.M.
        Blockade of lipopolysaccharide-induced fever by subdiaphragmatic vagotomy in guinea pigs.
        Brain Res. 1996; 726: 160-166
        • Shurin G.
        • Shanks N.
        • Nelson L.
        • Hoffman G.
        • Huang L.
        • Kusnecov A.W.
        Hypothalamic–pituitary–adrenal activation by the bacterial superantigen staphylococcal enterotoxin B: role of macrophages and T cells.
        Neuroendocrinology. 1997; 65: 18-28
        • Steinbrecht R.A.
        Odorant binding proteins: expression and function.
        Ann. NY Acad. Sci. 1998; 855: 323-332
        • Steinman R.M.
        The dendritic cell and its role in immunogenicity.
        Annu. Rev. Immunol. 1991; 9: 271-296
        • Terenzi M.G.
        • Ingram C.D.
        A combined immunocytochemical and retrograde tracing study of the noradrenergic connections between the caudal medulla and bed nuclei of the stria terminalis.
        Brain Res. 1995; 672: 289-297
        • Tkacs N.C.
        • Li J.
        • Strack A.M.
        Central amygdala Fos expression during hypotensive or febrile, nonhypotensive endotoxemia in conscious rats.
        J. Comp. Neurol. 1997; 379: 592-605
        • Tkacs N.C.
        • Li J.
        Immune stimulation induces Fos expression in brainstem amygdala afferents.
        Brain Res. Bull. 1999; 48: 223-231
        • Tucker D.C.
        • Saper C.B.
        • Ruggiero D.A.
        • Reis D.J.
        Organization of central adrenergic pathways. I. Relationships of ventrolateral medullary projections to the hypothalamus and spinal cord.
        J. Comp. Neurol. 1987; 259: 591-603
        • Ulevitch R.J.
        • Tobias P.S.
        Recognition of Gram-negative bacteria and endotoxin by the innate immune system.
        Curr. Opin. Immunol. 1999; 11: 19-22
        • Ulinski P.
        Design features in vertebrate sensory systems.
        Am. Zool. 1984; 24: 717-731
        • Undem B.J.
        • Hubbard W.
        • Weinreich D.
        Immunologically induced neuromodulation of guinea pig nodose ganglion neurons.
        J. Auton. Nerv. Syst. 1993; 44: 35-44
        • Van Dam A.M.W.
        • Brouns M.
        • Louisse S.
        • Berkenbosch F.
        Appearance of interleukin-1 in macrophages and ramified microglia in the brain of endotoxin-treated rats: a pathway for the induction of non-specific symptoms of sickness?.
        Brain Res. 1992; 588: 291-296
        • Wan W.
        • Wetmore L.
        • Sorensen C.M.
        • Greenberg A.H.
        • Nance D.M.
        Neural and biochemical mediators of endotoxin and stress-induced c-fos expression in the rat brain.
        Brain Res. Bull. 1994; 34: 7-14
        • Watkins L.R.
        • Maier S.F.
        • Goehler L.E.
        Cytokine-to-brain communication: a review and analysis of alternative mechanisms.
        Life Sci. 1995; 57: 1011-1026
        • Watkins L.R.
        • Goehler L.E.
        • Relton J.K.
        • Tartaglia N.
        • Silbert L.
        • Martin D.
        • Maier S.F.
        Blockade of interleukin-1-induced fever by subdiaphragmatic vagotomy: evidence for vagal mediation of immune-brain communication.
        Neurosci. Lett. 1995; 183: 27-31
        • Weinreich D.
        • Moore K.A.
        • Taylor G.E.
        Allergic inflammation in isolated vagal sensory ganglia unmasks silent NK-2 tachykinin receptors.
        J. Neurosci. 1997; 17: 7683-7693
        • Yoshimura A.
        • Lien E.
        • Ingalls R.R.
        • Tuomanen E.
        • Dziarski R.
        • Golenbock D.
        Cutting edge: recognition of gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2.
        J. Immunol. 1999; 163: 1-5