Advertisement

Gut chemosensing: Interactions between gut endocrine cells and visceral afferents

  • Helen E. Raybould
    Correspondence
    Tel.: +1 530 754 6555; fax: +1 530 752 7690.
    Affiliations
    Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Vet Med: APC, 1320 Haring Hall, 1, Shields Ave, Davis, CA 95616, United States
    Search for articles by this author

      Abstract

      Chemosensing in the gastrointestinal tract is less well understood than many aspects of gut mechanosensitivity; however, it is important in the overall function of the GI tract and indeed the organism as a whole. Chemosensing in the gut represents a complex interplay between the function of enteroendocrine (EEC) cells and visceral (primarily vagal) afferent neurons. In this brief review, I will concentrate on a new data on endocrine cells in chemosensing in the GI tract, in particular on new findings on glucose-sensing by gut EEC cells and the importance of incretin peptides and vagal afferents in glucose homeostasis, on the role of G protein coupled receptors in gut chemosensing, and on the possibility that gut endocrine cells may be involved in the detection of a luminal constituent other than nutrients, the microbiota. The role of vagal afferent pathways as a downstream target of EEC cell products will be considered and, in particular, exciting new data on the plasticity of the vagal afferent pathway with respect to expression of receptors for GI hormones and how this may play a role in energy homeostasis will also be discussed.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Autonomic Neuroscience: Basic and Clinical
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abreu M.T.
        • Fukata M.
        • Arditi M.
        TLR signaling in the gut in health and disease.
        J. Immunol. 2005; 174: 4453-4460
        • Adler E.
        • Hoon M.A.
        • Mueller K.L.
        • Chandrashekar J.
        • Ryba N.J.
        • Zuker C.S.
        A novel family of mammalian taste receptors.
        Cell. 2000; 100: 693-702
        • Ahren B.
        Sensory nerves contribute to insulin secretion by glucagon-like peptide-1 in mice.
        Am. J. Physiol., Endocrinol. Metabol. Gastrointest. Physiol. 2004; 286: R269-R272
        • Baggio L.L.
        • Drucker D.J.
        Biology of incretins: GLP-1 and GIP.
        Gastroenterology. 2007; 132: 2131-2157
        • Bogunovic M.
        • Davé S.H.
        • Tilstra J.S.
        • Chang D.T.
        • Harpaz N.
        • Xiong H.
        • Mayer L.F.
        • Plevy S.E.
        Enteroendocrine cells express functional Toll-like receptors.
        Am. J. Physiol.: Gasterointest. Liver Physiol. 2007; 292: G1770-G1783
        • Brown A.J.
        • Goldsworthy S.M.
        • Barnes A.A.
        • Eilert M.M.
        • Tcheang L.
        • Daniels D.
        • Muir A.I.
        • Wigglesworth M.J.
        • Kinghorn I.
        • Fraser N.J.
        • Pike N.B.
        • Strum J.C.
        • Steplewski K.M.
        • Murdock P.R.
        • Holder J.C.
        • Marshall F.H.
        • Szekeres P.G.
        • Wilson S.
        • Ignar D.M.
        • Foord S.M.
        • Wise A.
        • Dowell S.J.
        The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids.
        J. Biol. Chem. 2003; 278: 11312-11319
        • Burdyga G.
        • Varro A.
        • Dimaline R.
        • Thompson D.G.
        • Dockray G.J.
        Ghrelin receptors in rat and human nodose ganglia: putative role in regulating CB-1 and MCH receptor abundance.
        Am. J. Physiol.: Gasterointest. Liver Physiol. 2006; 290: G1289-G1297
        • Burdyga G.
        • Varro A.
        • Dimaline R.
        • Thompson D.G.
        • Dockray G.J.
        Feeding-dependent depression of melanin-concentrating hormone and melanin-concentrating hormone receptor-1 expression in vagal afferent neurones.
        Neuroscience. 2006; 137: 1405-1415
        • Burdyga G.
        • de Lartigue G.
        • Raybould H.E.
        • Morris R.
        • Dimaline R.
        • Varro A.
        • Thompson D.G.
        • Dockray G.J.
        Cholecystokinin regulates expression of Y2 receptors in vagal afferent neurons serving the stomach.
        J. Neurosci. 2008; 28: 11583-11592
        • Caicedo A.
        • Pereira E.
        • Margolskee R.F.
        • Roper S.D.
        Role of the G-protein subunit alpha-gustducin in taste cell responses to bitter stimuli.
        J. Neurosci. 2003; 23: 9947-9952
        • Chandrashekar J.
        • Mueller K.L.
        • Hoon M.A.
        • Adler E.
        • Feng L.
        • Guo W.
        • Zuker C.S.
        • Ryba N.J.
        T2Rs function as bitter taste receptors.
        Cell. 2000; 100: 703-711
        • Chen M.C.
        • Wu S.V.
        • Reeve Jr., J.R.
        • Rozengurt E.
        Bitter stimuli induce Ca2+ signaling and CCK release in enteroendocrine STC-1 cells: role of L-type voltage-sensitive Ca2+ channels.
        Am. J. Physiol., Cell Physiol. 2006; 291: C726-C739
        • Choi S.
        • Lee M.
        • Shiu A.L.
        • Yo S.J.
        • Halldén G.
        • Aponte G.W.
        GPR93 activation by protein hydrolysate induces CCK transcription and secretion in STC-1 cells.
        Am. J. Physiol.: Gasterointest. Liver Physiol. 2007; 292: G1366-G1375
        • de Lartigue G.
        • Dimaline R.
        • Varro A.
        • Dockray G.J.
        Cocaine- and amphetamine-regulated transcript: stimulation of expression in rat vagal afferent neurons by cholecystokinin and suppression by ghrelin.
        J. Neurosci. 2007; 27: 2876-2882
        • Diez-Sampedro A.
        • Hirayama B.A.
        • Osswald C.
        • Gorboulev V.
        • Baumgarten K.
        • Volk C.
        • Wright E.M.
        • Koepsell H.
        A glucose sensor hiding in a family of transporters.
        Proc. Natl. Acad. Sci. U. S. A. 2003; 100: 11753-11758
        • Dockray G.J.
        Luminal sensing in the gut: an overview.
        J. Physiol. Pharmacol. 2003; 54: 9-17
        • Dockray G.J.
        Gastrointestinal hormones: gastrin, cholecystokinin, somatostatin and ghrelin.
        in: Johnson L.R. Physiology of the Gastrointestinal Tract. Academic Press, 2006: 91-120
        • Dockray G.J.
        The versatility of the vagus.
        Physiol. Behav. 2009; 97: 531-536
        • Drucker D.J.
        The role of gut hormones in glucose homeostasis.
        J. Clin. Invest. 2007; 117: 24-32
        • Dubé P.E.
        • Brubaker P.L.
        Frontiers in glucagon-like peptide-2: multiple actions, multiple mediators.
        Am. J. Physiol.: Endocrinol. Metab. 2007; 293: E460-E465
        • Dyer J.
        • Salmon K.S.
        • Zibrik L.
        • Shirazi-Beechey S.P.
        Expression of sweet taste receptors of the T1R family in the intestinal tract and enteroendocrine cells.
        Biochem. Soc. Trans. 2005; 33: 302-305
        • Dyer J.
        • Daly K.
        • Salmon K.S.
        • Arora D.K.
        • Kokrashvili Z.
        • Margolskee R.F.
        • Shirazi-Beechey S.P.
        Intestinal glucose sensing and regulation of intestinal glucose absorption.
        Biochem. Soc. Trans. 2007; 35: 1191-1194
        • Engelstoft M.S.
        • Egerod K.L.
        • Holst B.
        • Schwartz T.W.
        A gut feeling for obesity: 7TM sensors on enteroendocrine cells.
        Cell Metab. 2008; 8: 447-449
        • Freeman S.L.
        • Bohan D.
        • Darcel N.
        • Raybould H.E.
        Luminal glucose sensing has characteristics of a sodium-glucose co-transporter.
        Am. J. Physiol.: Gasterointest. Liver Physiol. 2006; 291: G439-G445
        • Goehler L.E.
        • Gaykema R.P.
        • Hansen M.K.
        • Anderson K.
        • Maier S.F.
        • Watkins L.R.
        Vagal immune-to-brain communication: a visceral chemosensory pathway.
        Auton. Neurosci. 2000; 85: 49-59
        • Gribble F.M.
        • Williams L.
        • Simpson A.K.
        • Reimann F.
        A novel glucose-sensing mechanism contributing to glucagon-like peptide-1 secretion from the GLUTag cell line.
        Diabetes. 2003; 52: 1147-1154
        • Hao S.
        • Sternini C.
        • Raybould H.E.
        Role of CCK1 and Y2 receptors in activation of hindbrain neurons induced by intragastric administration of bitter taste receptor ligands.
        Am. J. Physiol., Regul. Integr. Comp. Physiol. 2008; 294: R33-R38
        • Hao S.
        • Dulake M.
        • Espero E.
        • Sternini C.
        • Raybould H.E.
        • Rinaman L.
        Central Fos expression and conditioned flavor avoidance in rats following intragastric administration of bitter taste receptor ligands.
        Am. J. Physiol., Regul. Integr. Comp. Physiol. 2009; 296: R528-R536
        • Hirasawa A.
        • Tsumaya K.
        • Awaji T.
        • Katsuma S.
        • Adachi T.
        • Yamada M.
        • Sugimoto Y.
        • Miyazaki S.
        • Tsujimoto G.
        Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120.
        Nat. Med. 2005; 11: 90-94
        • Hirasawa A.
        • Hara T.
        • Katsuma S.
        • Adachi T.
        • Tsujimoto G.
        Free fatty acid receptors and drug discovery.
        Biol. Pharm. Bull. 2008; 31: 1847-1851
        • Jang H.J.
        • Kokrashvili Z.
        • Theodorakis M.J.
        • Carlson O.D.
        • Kim B.J.
        • Zhou J.
        • Kim H.H.
        • Xu X.
        • Chan S.L.
        • Juhaszova M.
        • Bernier M.
        • Mosinger B.
        • Margolskee R.F.
        • Egan J.M.
        Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1.
        Proc. Natl. Acad. Sci. U. S. A. 2007; 104: 15069-15074
        • Kim M.
        • Cooke H.J.
        • Javed N.H.
        • Carey H.V.
        • Christofi F.
        • Raybould H.E.
        d-Glucose releases 5-hydroxytryptamine from human BON cells as a model of enterochromaffin cells.
        Gastroenterology. 2001; 121: 1400-1406
        • Levin B.E.
        • Magnan C.
        • Migrenne S.
        • Chua Jr., S.C.
        • Dunn-Meynell A.A.
        F-DIO obesity-prone rat is insulin resistant before obesity onset.
        Am. J. Physiol., Regul. Integr. Comp. Physiol. 2005; 289: R704-R711
        • Li Y.
        • Hao Y.
        • Zhu J.
        • Owyang C.
        Serotonin released from intestinal enterochromaffin cells mediates luminal non-cholecystokinin-stimulated pancreatic secretion in rats.
        Gastroenterology. 2000; 118: 1197-1207
        • Li Y.
        • Wu X.Y.
        • Zhu J.X.
        • Owyang C.
        Intestinal serotonin acts as paracrine substance to mediate pancreatic secretion stimulated by luminal factors.
        Am. J. Physiol.: Gasterointest. Liver Physiol. 2001; 281: G916-G923
        • Margolskee R.F.
        • Dyer J.
        • Kokrashvili Z.
        • Salmon K.S.
        • Ilegems E.
        • Daly K.
        • Maillet E.L.
        • Ninomiya Y.
        • Mosinger B.
        • Shirazi-Beechey S.P.
        T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1.
        Proc. Natl. Acad. Sci. U. S. A. 2007; 104: 15075-15080
        • Moran T.H.
        Gut peptides in the control of food intake.
        Int. J. Obes. (Lond.). 2009; 33: S7-10
        • Owyang C.
        • Logsdon C.D.
        New insights into neurohormonal regulation of pancreatic secretion.
        Gastroenterology. 2004; 127: 957-969
        • Palazzo M.
        • Balsari A.
        • Rossini A.
        • Selleri S.
        • Calcaterra C.
        • Gariboldi S.
        • Zanobbio L.
        • Arnaboldi F.
        • Shirai Y.F.
        • Serrao G.
        • Rumio C.
        Activation of enteroendocrine cells via TLRs induces hormone, chemokine, and defensin secretion.
        J. Immunol. 2007; 178: 4296-4303
        • Parker H.E.
        • Habib A.M.
        • Rogers G.J.
        • Gribble F.M.
        • Reimann F.
        Nutrient-dependent secretion of glucose-dependent insulinotropic polypeptide from primary murine K cells.
        Diabetologia. 2009; 52: 289-298
        • Paulino G.
        • Barbier de la Serre C.
        • Knotts T.A.
        • Oort P.J.
        • Newman J.W.
        • Adams S.H.
        • Raybould H.E.
        Increased expression of receptors for orexigenic factors in nodose ganglion of diet-induced obese rats.
        Am. J. Physiol. Endocrinol. Metab. 2009; 296: E898-E903
        • Raybould H.E.
        Nutrient tasting and signaling mechanisms in the gut. I. Sensing of lipid by the intestinal mucosa.
        Am. J. Physiol. 1999; 277: G751-G755
        • Raybould H.E.
        Sensing of glucose in the gastrointestinal tract.
        Auton. Neurosci. 2007; 133: 86-90
        • Raybould H.E.
        • Glatzle J.
        • Robin C.
        • Meyer J.H.
        • Phan T.
        • Wong H.
        • Sternini C.
        Expression of 5-HT3 receptors by extrinsic duodenal afferents contribute to intestinal inhibition of gastric emptying.
        Am. J. Physiol.: Gasterointest. Liver Physiol. 2003; 284: G367-G372
        • Raybould H.E.
        • Glatzle J.
        • Freeman S.L.
        • Whited K.
        • Darcel N.
        • Liou A.
        • Bohan D.
        Detection of macronutrients in the intestinal wall.
        Auton. Neurosci. 2006; 125: 28-33
        • Reimann F.
        • Gribble F.M.
        Glucose-sensing in glucagon-like peptide-1-secreting cells.
        Diabetes. 2002; 51: 2757-2763
        • Reimann F.
        • Habib A.M.
        • Tolhurst G.
        • Parker H.E.
        • Rogers G.J.
        • Gribble F.M.
        Glucose sensing in L cells: a primary cell study.
        Cell Metab. 2008; 8: 532-539
        • Rozengurt E.
        Taste receptors in the gastrointestinal tract. I. Bitter taste receptors and alpha-gustducin in the mammalian gut.
        Am. J. Physiol.: Gasterointest. Liver Physiol. 2006; 291: G171-177
        • Rozengurt N.
        • Wu S.
        • Chen M.C.
        • Huang C.
        • Sternini C.
        • Rozengurt E.
        Co-localization of the alpha subunit of gustducin with PYY and GLP-1 in L cells of human colon.
        Am. J. Physiol.: Gasterointest. Liver Physiol. 2006; 291: G792-G802
        • Samuel B.S.
        • Shaito A.
        • Motoike T.
        • Rey F.E.
        • Backhed F.
        • Manchester J.K.
        • Hammer R.E.
        • Williams S.C.
        • Crowley J.
        • Yanagisawa M.
        • Gordon J.I.
        Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41.
        Proc. Natl. Acad. Sci. U. S. A. 2008; 105: 16767-16772
        • Savastano D.M.
        • Covasa M.
        Adaptation to a high-fat diet leads to hyperphagia and diminished sensitivity to cholecystokinin in rats.
        J. Nutr. 2005; 135: 1953-1959
        • Savastano D.M.
        • Carelle M.
        • Covasa M.
        Serotonin-type 3 receptors mediate intestinal polycose- and glucose-induced suppression of intake.
        Am. J. Physiol., Regul. Integr. Comp. Physiol. 2005; 288: R1499-R1508
        • Schuit F.C.
        • Huypens P.
        • Heimberg H.
        • Pipeleers D.G.
        Glucose sensing in pancreatic beta-cells: a model for the study of other glucose-regulated cells in gut, pancreas, and hypothalamus.
        Diabetes. 2001; 50: 1-11
        • Sternini C.
        Taste receptors in the gastrointestinal tract. IV. Functional implications of bitter taste receptors in gastrointestinal chemosensing.
        Am. J. Physiol.: Gasterointest. Liver Physiol. 2007; 292: G457-G461
        • Strader A.D.
        • Woods S.C.
        Gastrointestinal hormones and food intake.
        Gastroenterology. 2005; 128: 175-191
        • Sutherland K.
        • Young R.L.
        • Cooper N.J.
        • Horowitz M.
        • Blackshaw L.A.
        Phenotypic characterization of taste cells of the mouse intestine.
        Am. J. Physiol.: Gasterointest. Liver Physiol. 2007; 292: G1420-G1428
        • Tanaka T.
        • Katsuma S.
        • Adachi T.
        • Koshimizu T.A.
        • Hirasawa A.
        • Tsujimoto G.
        Free fatty acids induce cholecystokinin secretion through GPR120.
        Naunyn-Schmiedeberg's Arch. Pharmacol. 2008; 377: 523-527
        • Theodorakis M.J.
        • Carlson O.
        • Michopoulos S.
        • Doyle M.E.
        • Juhaszova M.
        • Petraki K.
        • Egan J.M.
        Human duodenal enteroendocrine cells: source of both incretin peptides, GLP-1 and GIP.
        Am. J. Physiol., Endocrinol Metabol. Gastrointest. Physiol. 2006; 290: E550-E559
        • Tolhurst G.
        • Reimann F.
        • Gribble F.M.
        Nutritional regulation of glucagon-like peptide-1 secretion.
        J. Physiol. 2009; 587: 27-32
        • Vahl T.P.
        • Tauchi M.
        • Durler T.S.
        • Elfers E.E.
        • Fernandes T.M.
        • Bitner R.D.
        • Ellis K.S.
        • Woods S.C.
        • Seeley R.J.
        • Herman J.P.
        • D'Alessio D.A.
        Glucagon-like peptide-1 (GLP-1) receptors expressed on nerve terminals in the portal vein mediate the effects of endogenous GLP-1 on glucose tolerance in rats.
        Endocrinology. 2007; 148: 4965-4973
        • Wu S.V.
        • Rozengurt N.
        • Yang M.
        • Young S.H.
        • Sinnett-Smith J.
        • Rozengurt E.
        Expression of bitter taste receptors of the T2R family in the gastrointestinal tract and enteroendocrine STC-1 cells.
        Proc. Natl. Acad. Sci. U. S. A. 2002; 99: 2392-2397