Research Article| Volume 164, ISSUE 1-2, P20-26, October 28, 2011

Download started.


Pharmacological investigations of the cellular transduction pathways used by cholecystokinin to activate nodose neurons

  • Huan Zhao
    Corresponding author. Tel.: +1 509 335 7920; fax: +1 509 335 4650.
    Program in Neuroscience, Dept of Veterinary and Comparative Anatomy, Pharmacology, and Physiology Washington State University, Pullman, WA 99164, United States
    Search for articles by this author
  • Dallas C. Kinch
    Program in Neuroscience, Dept of Veterinary and Comparative Anatomy, Pharmacology, and Physiology Washington State University, Pullman, WA 99164, United States
    Search for articles by this author
  • Steven M. Simasko
    Program in Neuroscience, Dept of Veterinary and Comparative Anatomy, Pharmacology, and Physiology Washington State University, Pullman, WA 99164, United States
    Search for articles by this author


      Cholecystokinin (CCK) directly activates vagal afferent neurons resulting in coordinated gastrointestinal functions and satiation. In vitro, the effects of CCK on dissociated vagal afferent neurons are mediated via activation of the vanilloid family of transient receptor potential (TRPV) cation channels leading to membrane depolarization and an increase in cytosolic calcium. However, the cellular transduction pathway(s) involved in this process between CCK receptors and channel opening have not been identified. To address this question, we monitored CCK-induced cytosolic calcium responses in dissociated nodose neurons from rat in the presence or absence of reagents that interact with various intracellular signaling pathways. We found that the phospholipase C (PLC) inhibitor U-73122 significantly attenuated CCK-induced responses, whereas the inactive analog U-73433 had no effect. Responses to CCK were also cross-desensitized by a brief pretreatment with m-3M3FBS, a PLC stimulator. Together these observations strongly support the participation of PLC in the effects of CCK on vagal afferent neurons. In contrast, pharmacological antagonism of phospholipase A2, protein kinase A, and phosphatidylinositol 3-kinase revealed that they are not critical in the CCK-induced calcium response in nodose neurons. Further investigations of the cellular pathways downstream of PLC showed that neither protein kinase C (PKC) nor generation of diacylglycerol (DAG) or release of calcium from intracellular stores participates in the response to CCK. These results suggest that alteration of membrane phosphatidylinositol 4,5-bisphosphate (PIP2) content by PLC activity mediates CCK-induced calcium response and that this pathway may underlie the vagally-mediated actions of CCK to induce satiation and alter gastrointestinal functions.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Autonomic Neuroscience: Basic and Clinical
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Alcon S.
        • Morales S.
        • Camello P.J.
        • Pozo M.J.
        Contribution of different phospholipases and arachidonic acid metabolites in the response of gallbladder smooth muscle to cholecystokinin.
        Biochem. Pharmacol. 2002; 64: 1157-1167
        • Bae Y.S.
        • Lee T.G.
        • Park J.C.
        • Hur J.H.
        • Kim Y.
        • Heo K.
        • Kwak J.Y.
        • Suh P.G.
        • Ryu S.H.
        Identification of a compound that directly stimulates phospholipase C activity.
        Mol. Pharmacol. 2003; 63: 1043-1050
        • Bleasdale J.E.
        • Thakur N.R.
        • Gremban R.S.
        • Bundy G.L.
        • Fitzpatrick F.A.
        • Smith R.J.
        • Bunting S.
        Selective inhibition of receptor-coupled phospholipase C-dependent processes in human platelets and polymorphonuclear neutrophils.
        J. Pharmacol. Exp. Ther. 1990; 255: 756-768
        • Bootman M.D.
        • Collins T.J.
        • Mackenzie L.
        • Roderick H.L.
        • Berridge M.J.
        • Peppiatt C.M.
        2-aminoethoxydiphenyl borate (2-APB) is a reliable blocker of store-operated Ca2+ entry but an inconsistent inhibitor of InsP3-induced Ca2+ release.
        FASEB J. 2002; 16: 1145-1150
        • Broberger C.
        • Holmberg K.
        • Shi T.J.
        • Dockray G.
        • Hokfelt T.
        Expression and regulation of cholecystokinin and cholecystokinin receptors in rat nodose and dorsal root ganglia.
        Brain Res. 2001; 903: 128-140
        • Corp E.S.
        • McQuade J.
        • Moran T.H.
        • Smith G.P.
        Characterization of type A and type B CCK receptor binding sites in rat vagus nerve.
        Brain Res. 1993; 623: 161-166
        • Deng P.Y.
        • Xiao Z.
        • Jha A.
        • Ramonet D.
        • Matsui T.
        • Leitges M.
        • Shin H.S.
        • Porter J.E.
        • Geiger J.D.
        • Lei S.
        Cholecystokinin facilitates glutamate release by increasing the number of readily releasable vesicles and releasing probability.
        J. Neurosci. 2010; 30: 5136-5148
        • Gibbs J.
        • Young R.C.
        • Smith G.P.
        Cholecystokinin decreases food intake in rats.
        J. Comp. Physiol. Psychol. 1973; 84: 488-495
        • Herness S.
        • Zhao F.L.
        • Lu S.G.
        • Kaya N.
        • Shen T.
        Expression and physiological actions of cholecystokinin in rat taste receptor cells.
        J. Neurosci. 2002; 22: 10018-10029
        • Hong S.S.
        • Gibney G.T.
        • Esquilin M.
        • Yu J.
        • Xia Y.
        Effect of protein kinases on lactate dehydrogenase activity in cortical neurons during hypoxia.
        Brain Res. 2004; 1009: 195-202
        • Horowitz L.F.
        • Hirdes W.
        • Suh B.C.
        • Hilgemann D.W.
        • Mackie K.
        • Hille B.
        Phospholipase C in living cells: activation, inhibition, Ca2+ requirement, and regulation of M current.
        J. Gen. Physiol. 2005; 126: 243-262
        • Hu H.Z.
        • Gu Q.
        • Wang C.
        • Colton C.K.
        • Tang J.
        • Kinoshita-Kawada M.
        • Lee L.Y.
        • Wood J.D.
        • Zhu M.X.
        2-aminoethoxydiphenyl borate is a common activator of TRPV1, TRPV2, and TRPV3.
        J. Biol. Chem. 2004; 279: 35741-35748
        • Jin W.
        • Lo T.M.
        • Loh H.H.
        • Thayer S.A.
        U73122 inhibits phospholipase C-dependent calcium mobilization in neuronal cells.
        Brain Res. 1994; 642: 237-243
        • Lankisch T.O.
        • Tsunoda Y.
        • Lu Y.
        • Owyang C.
        Characterization of CCK(A) receptor affinity states and Ca(2+) signal transduction in vagal nodose ganglia.
        Am. J. Physiol. Gastrointest. Liver Physiol. 2002; 282: G1002-G1008
        • Li Y.
        • Hao Y.
        • Owyang C.
        High-affinity CCK-A receptors on the vagus nerve mediate CCK-stimulated pancreatic secretion in rats.
        Am. J. Physiol. 1997; 273: G679-G685
        • Lin C.W.
        • Miller T.R.
        Both CCK-A and CCK-B/gastrin receptors are present on rabbit vagus nerve.
        Am. J. Physiol. 1992; 263: R591-R595
        • Liu L.
        • Heneghan J.F.
        • Michael G.J.
        • Stanish L.F.
        • Egertova M.
        • Rittenhouse A.R.
        L- and N-current but not M-current inhibition by M1 muscarinic receptors requires DAG lipase activity.
        J. Cell. Physiol. 2008; 216: 91-100
        • Ma K.T.
        • Si J.Q.
        • Zhang Z.Q.
        • Zhao L.
        • Fan P.
        • Jin J.L.
        • Li X.Z.
        • Zhu L.
        Modulatory effect of CCK-8S on GABA-induced depolarization from rat dorsal root ganglion.
        Brain Res. 2006; 1121: 66-75
        • Matozaki T.
        • Williams J.A.
        Multiple sources of 1,2-diacylglycerol in isolated rat pancreatic acini stimulated by cholecystokinin. Involvement of phosphatidylinositol bisphosphate and phosphatidylcholine hydrolysis..
        J. Biol. Chem. 1989; 264: 14729-14734
        • Mogami H.
        • Lloyd Mills C.
        • Gallacher D.V.
        Phospholipase C inhibitor, U73122, releases intracellular Ca2+, potentiates Ins(1,4,5)P3-mediated Ca2+ release and directly activates ion channels in mouse pancreatic acinar cells.
        Biochem. J. 1997; 324: 645-651
        • Moran T.H.
        • Kornbluh R.
        • Moore K.
        • Schwartz G.J.
        Cholecystokinin inhibits gastric emptying and contracts the pyloric sphincter in rats by interacting with low affinity CCK receptor sites.
        Regul. Pept. 1994; 52: 165-172
        • Morioka N.
        • Takeda K.
        • Kumagai K.
        • Hanada T.
        • Ikoma K.
        • Hide I.
        • Inoue A.
        • Nakata Y.
        Interleukin-1beta-induced substance P release from rat cultured primary afferent neurons driven by two phospholipase A2 enzymes: secretory type IIA and cytosolic type IV.
        J. Neurochem. 2002; 80: 989-997
        • Okada T.
        • Sakuma L.
        • Fukui Y.
        • Hazeki O.
        • Ui M.
        Blockage of chemotactic peptide-induced stimulation of neutrophils by wortmannin as a result of selective inhibition of phosphatidylinositol 3-kinase.
        J. Biol. Chem. 1994; 269: 3563-3567
        • Ozcan M.
        • Ayar A.
        • Serhatlioglu I.
        • Alcin E.
        • Sahin Z.
        • Kelestimur H.
        Orexins activates protein kinase C-mediated Ca(2+) signaling in isolated rat primary sensory neurons.
        Physiol. Res. 2009; 59: 255-262
        • Peters J.H.
        • Ritter R.C.
        • Simasko S.M.
        Leptin and CCK modulate complementary background conductances to depolarize cultured nodose neurons.
        Am. J. Physiol. Cell. Physiol. 2006; 290: C427-C432
        • Peters J.H.
        • Ritter R.C.
        • Simasko S.M.
        Leptin and CCK selectively activate vagal afferent neurons innervating the stomach and duodenum.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006; 290: R1544-R1549
        • Powley T.L.
        • Berthoud H.
        • Prechtl J.C.
        • Fox E.A.
        Tache Y. Wingate D. Brain-Gut Interactions. CRC Press, Boca Ratan, FL1991: 73-82
        • Ramsey I.S.
        • Delling M.
        • Clapham D.E.
        An introduction to TRP channels.
        Annu. Rev. Physiol. 2006; 68: 619-647
        • Reidelberger R.D.
        • Hernandez J.
        • Fritzsch B.
        • Hulce M.
        Abdominal vagal mediation of the satiety effects of CCK in rats.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004; 286: R1005-R1012
        • Ritter R.C.
        • Ladenheim E.E.
        Capsaicin pretreatment attenuates suppression of food intake by cholecystokinin.
        Am. J. Physiol. 1985; 248: R501-R504
        • Rogers R.C.
        • Hermann G.E.
        Mechanisms of action of CCK to activate central vagal afferent terminals.
        Peptides. 2008; 29: 1716-1725
        • Rohacs T.
        Regulation of TRP channels by PIP(2).
        Pflugers Arch. 2007; 453: 753-762
        • Rohacs T.
        Phosphoinositide regulation of non-canonical transient receptor potential channels.
        Cell Calcium. 2009; 45: 554-565
        • Simasko S.M.
        • Ritter R.C.
        Cholecystokinin activates both A- and C-type vagal afferent neurons.
        Am. J. Physiol. Gastrointest. Liver Physiol. 2003; 285: G1204-G1213
        • Simasko S.M.
        • Wiens J.
        • Karpiel A.
        • Covasa M.
        • Ritter R.C.
        Cholecystokinin increases cytosolic calcium in a subpopulation of cultured vagal afferent neurons.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002; 283: R1303-R1313
        • Smith G.P.
        • Jerome C.
        • Norgren R.
        Afferent axons in abdominal vagus mediate satiety effect of cholecystokinin in rats.
        Am. J. Physiol. 1985; 249: R638-R641
        • Smith R.J.
        • Sam L.M.
        • Justen J.M.
        • Bundy G.L.
        • Bala G.A.
        • Bleasdale J.E.
        Receptor-coupled signal transduction in human polymorphonuclear neutrophils: effects of a novel inhibitor of phospholipase C-dependent processes on cell responsiveness.
        J. Pharmacol. Exp. Ther. 1990; 253: 688-697
        • Tsujino N.
        • Yamanaka A.
        • Ichiki K.
        • Muraki Y.
        • Kilduff T.S.
        • Yagami K.
        • Takahashi S.
        • Goto K.
        • Sakurai T.
        Cholecystokinin activates orexin/hypocretin neurons through the cholecystokinin A receptor.
        J. Neurosci. 2005; 25: 7459-7469
        • Tsunoda Y.
        • Owyang C.
        Differential involvement of phospholipase A2/arachidonic acid and phospholipase C/phosphoinositol pathways during cholecystokinin receptor activated Ca2+ oscillations in pancreatic acini.
        Biochem. Biophys. Res. Commun. 1993; 194: 1194-1202
        • Tsunoda Y.
        • Owyang C.
        High-affinity CCK receptors are coupled to phospholipase A2 pathways to mediate pancreatic amylase secretion.
        Am. J. Physiol. 1995; 269: G435-G444
        • Vickers J.D.
        U73122 affects the equilibria between the phosphoinositides as well as phospholipase C activity in unstimulated and thrombin-stimulated human and rabbit platelets.
        J. Pharmacol. Exp. Ther. 1993; 266: 1156-1163
        • Voets T.
        • Nilius B.
        Modulation of TRPs by PIPs.
        J. Physiol. 2007; 582: 939-944
        • Wang C.
        • Li G.W.
        • Huang L.Y.
        Prostaglandin E2 potentiation of P2X3 receptor mediated currents in dorsal root ganglion neurons.
        Mol. Pain. 2007; 3: 22
        • Whited K.L.
        • Thao D.
        • Lloyd K.C.
        • Kopin A.S.
        • Raybould H.E.
        Targeted disruption of the murine CCK1 receptor gene reduces intestinal lipid-induced feedback inhibition of gastric function.
        Am. J. Physiol. Gastrointest. Liver. Physiol. 2006; 291: G156-G162
        • Williams J.A.
        • Sans M.D.
        • Tashiro M.
        • Schafer C.
        • Bragado M.J.
        • Dabrowski A.
        Cholecystokinin activates a variety of intracellular signal transduction mechanisms in rodent pancreatic acinar cells.
        Pharmacol. Toxicol. 2002; 91: 297-303
        • Wu T.
        • Wang H.L.
        CCK-8-evoked cationic currents in substantia nigra dopaminergic neurons are mediated by InsP3-induced Ca2+ release.
        Neurosci. Lett. 1994; 175: 95-98
        • Wu T.
        • Wang H.L.
        The excitatory effect of cholecystokinin on rat neostriatal neurons: ionic and molecular mechanisms.
        Eur. J. Pharmacol. 1996; 307: 125-132
        • Yang Y.M.
        • Chung J.M.
        • Rhim H.
        Cellular action of cholecystokinin-8S-mediated excitatory effects in the rat periaqueductal gray.
        Life Sci. 2006; 79: 1702-1711
        • Yang Y.M.
        • Chung J.M.
        • Rhim H.
        Cholecystokinin-8S-induced intracellular calcium signaling in acutely isolated periaqueductal gray neurons of the rat.
        Biol. Pharm. Bull. 2007; 30: 297-302
        • Zhao H.
        • Simasko S.M.
        Role of transient receptor potential channels in cholecystokinin-induced activation of cultured vagal afferent neurons.
        Endocrinology. 2010; 151: 5237-5246