Schlager mice are hypertensive due to an overactive sympathetic nervous system, which
is associated with a greater blood pressure (BP) reactivity to stress. The medial
amygdala (MeAm) is a major site within the forebrain, integrating the autonomic responses
to stress. Interestingly this region was also found to have the highest correlation
with blood pressure levels in Schlager mice. To determine whether the MeAm could be
responsible for the hypertension, we assessed the effect of MeAm ablation on BP and
stress reactivity. Radio-telemetry devices were implanted in 10 normotensive (BPN)
and 8 hypertensive (BPH) mice. Two weeks later, ibotenic acid was injected bilaterally
into the MeAm to lesion this region. In the week before and 3 weeks after lesion surgery, cardiovascular parameters were measured for 48 hrs and a series of stress tests were performed. During control measurements, BP was
121±4 mmHg in BPH compared to 101±2 mmHg in BPN mice (P<0.0001). MeAm lesions had no effect on the locomotor activity patterns in either strain
but caused a marked reduction in 24 hr BP, -11±5 mmHg (P=0.005) in BPH mice and no effect in BPN mice. The effect of the lesions was similar
during both day and night, suggesting a tonic effect independent of circadian rhythm.
Despite the marked reduction in blood pressure in BPH mice, the pressor response to
restraint stress was well maintained in BPH lesion mice. Further, the pressor response
to cage change was greater than prior to lesions in BPH mice (P=0.02). These results clearly show that the MeAm is crucial for the hypertension in
Schlager BPH mice, providing a tonic activation, which seems to be independent of
its role in stress reactivity or circadian BP influences.
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Autonomic Neuroscience: Basic and ClinicalAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
Article info
Identification
Copyright
© 2010 Published by Elsevier Inc.