Advertisement
Research Article| Volume 164, ISSUE 1-2, P67-73, October 28, 2011

Download started.

Ok

The profile of the extracellular matrix changes in the aorta after sympathectomy in the hypercholesterolemic rats

  • Rafik Hachani
    Affiliations
    Université de Carthage, Unité de Physiologie Intégrée, Laboratoire de Pathologies Vasculaires, Faculté des Sciences de Bizerte, 7021 Jarzouna, Tunisia

    Laboratoire d'Etude de la Microcirculation (EA 3509), Faculté de Médecine Lariboisière-St. Louis, Université Paris VII, France
    Search for articles by this author
  • Houcine Dab
    Affiliations
    Université de Carthage, Unité de Physiologie Intégrée, Laboratoire de Pathologies Vasculaires, Faculté des Sciences de Bizerte, 7021 Jarzouna, Tunisia
    Search for articles by this author
  • Mohsen Sakly
    Affiliations
    Université de Carthage, Unité de Physiologie Intégrée, Laboratoire de Pathologies Vasculaires, Faculté des Sciences de Bizerte, 7021 Jarzouna, Tunisia
    Search for articles by this author
  • Richard Sercombe
    Affiliations
    Laboratoire d'Etude de la Microcirculation (EA 3509), Faculté de Médecine Lariboisière-St. Louis, Université Paris VII, France
    Search for articles by this author
  • Jacques Callebert
    Affiliations
    Laboratoire de biochimie, Hôpital Lariboisière Paris, France
    Search for articles by this author
  • Eric Vicaut
    Affiliations
    Laboratoire d'Etude de la Microcirculation (EA 3509), Faculté de Médecine Lariboisière-St. Louis, Université Paris VII, France
    Search for articles by this author
  • Kamel Kacem
    Correspondence
    Corresponding author. Tel.: +21672590717; fax: +21672590566.
    Affiliations
    Université de Carthage, Unité de Physiologie Intégrée, Laboratoire de Pathologies Vasculaires, Faculté des Sciences de Bizerte, 7021 Jarzouna, Tunisia
    Search for articles by this author

      Abstract

      We previously showed that sympathectomy induces thickened intima and decreases the expression of cytoskeletal proteins associated with a differentiated smooth muscle cell (SMC) phenotype in hypercholesterolemic rats. In the present study, we sought to determine the effect of sympathectomy on various components of the extracellular matrix (ECM) in the aorta from these animals, since the state of SMC differentiation depends on the nature of ECM components.
      Collagen types I and III, previously reported to be associated with SMC dedifferentiation, and collagen VI, elastin, laminin and elastin–laminin receptor (E/L-R), previously reported to be associated with SMC differentiation, were analyzed by western immunoblot and confocal microscopy in abdominal aortae from sham rats and hypercholesterolemic rats sympathectomized with guanethidine.
      Both western immunoblot and immunohistological analysis showed an increase in collagens I and III (more for collagen I), with abundant labeling in the media, adventitia and thickened intima in sympathectomized aortae. Collagen IV labeling was decreased in the media and adventitia and was weak in the thickened intima in sympathectomised aortae. The E/L-R increased and was abundantly labeled in the media and weakly in the thickened intima in sympathectomized aortae. Elastin and laminin decreased and appeared less labeled in the media in the sympathectomised aortae. In the thickened intima, laminin was slightly labeled while elastin was not obviously labeled.
      These data show that sympathectomy favors the ECM features reported in association with a dedifferentiated/immature SMC phenotype and intimal thickening, probably by actions on both SMCs and fibroblasts.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Autonomic Neuroscience: Basic and Clinical
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Aberdeen J.
        • Corr L.
        • Milner P.
        • Lincoln J.
        • Burnstock G.
        Marked increases in calcitonin gene-related peptide-containing nerves in the developing rat following long-term sympathectomy with guanethidine.
        Neuroscience. 1990; 35: 175-184
        • Albino-Teixeira A.
        • Azevedo I.
        • Branco D.
        • Osswald W.
        Purine agonists prevent trophic changes caused by sympathetic denervation.
        Eur. J. Pharmacol. 1990; 179: 141-149
        • Azevedo I.
        • Osswald W.
        Trophic role of the sympathetic innervation.
        J. Pharmacol. 1986; 17: 30-43
        • Bochaton-Piallat M.L.
        • Gabbiani G.
        Modulation of smooth muscle cell proliferation and migration: role of smooth muscle cell heterogeneity.
        Handb. Exp. Pharmacol. 2005; 170: 645-663
        • Bottger B.A.
        • Hedin U.
        • Johansson S.
        • Thyberg J.
        Integrin-type fibronectin receptors of rat arterial smooth muscle cells: isolation, partial characterization and role in cytoskeletal organization and control of differentiated properties.
        Differentiation. 1989; 41: 158-167
        • Damon D.H.
        Sympathetic innervation promotes vascular smooth muscle differentiation.
        Am. J. Physiol. 2005; 288: H2785-H2791
        • Dimitriadou V.
        • Aubineau P.
        • Taxi J.
        • Seylaz J.
        Ultrastructural changes in the cerebral artery wall induced by long-term sympathetic denervation.
        Blood Vessels. 1988; 25: 122-143
        • Dobrin P.B.
        • Mrkvicka R.
        Failure of elastin or collagen as possible critical connective tissue alterations underlying aneurysmal dilatation.
        Cardiovasc. Surg. 1994; 2: 484-488
        • Dobrin P.B.
        • Baker W.H.
        • Gley W.C.
        Elastolytic and collagenolytic studies on arteries.
        Arch. Surg. 1984; 119: 405-409
        • Dwyer K.W.
        • Provenzano P.P.
        • Muir P.
        • Valhmu W.B.
        • Vanderby Jr., R.
        Blockade of the sympathetic nervous system degrades ligament in a rat MCL model.
        J. Appl. Physiol. 2004; 96: 711-718
        • Faury G.
        • Garnier S.
        • Weiss A.S.
        • Wallach J.
        • Fülöp Jr., T.
        • Jacob M.P.
        • Mecham R.P.
        • Robert L.
        • Verdetti J.
        Action of tropoelastin and synthetic elastin sequences on vascular tone and on free Ca2+ level in human vascular endothelial cells.
        Circ. Res. 1998; 82: 328-336
        • Fronek K.
        • Bloor C.M.
        • Ammiel D.
        • Chvapil M.
        Effect of long-term sympathectomy on the arterial wall in rabbits and rats.
        Exp. Mol. Pathol. 1978; 28: 279-289
        • Galle J.
        • Hansen-Hagge T.
        • Wanner C.
        • Seibold S.
        Impact of oxidized low density lipoprotein on vascular cells.
        Atherosclerosis. 2006; 185: 219-226
        • Gavazzi I.
        • Boyle K.S.
        • Edgar D.
        • Cowen T.
        Reduced laminin immunoreactivity in the blood vessel wall of ageing rats correlates with reduced innervation in vivo and following transplantation.
        Cell Tissue Res. 1995; 281: 23-32
        • Greilberger J.
        • Schmut O.
        • Jürgens G.
        In vitro interactions of oxidatively modified LDL with type I, II, III, IV, and V collagen, laminin, fibronectin, and poly-d-lysine.
        Arterioscler. Thromb. Vasc. Biol. 1997; 17: 2721-2728
        • Hachani R.
        • Dab H.
        • Sakly M.
        • Vicaut E.
        • Callebert J.
        • Sercombe R.
        • Kacem K.
        Influence of antagonist sensory and sympathetic nerves on smooth muscle cell differentiation in hypercholesterolemic rat.
        Auton. Neurosci. 2010; 155: 82-90
        • Hedin U.
        • Bottger B.A.
        • Forsberg E.
        • Johansson S.
        • Thyberg J.
        Diverse effects of fibronectin and laminin on phenotypic properties of cultured arterial smooth muscle cells.
        J. Cell Biol. 1988; 107: 307-319
        • Hinek A.
        Biological roles of the non-integrin elastin/laminin receptor.
        Biol. Chem. 1996; 377: 471-480
        • Ichii T.
        • Koyama H.
        • Tanaka S.
        • Kim S.
        • Shioi A.
        • Okuno Y.
        • Raines E.W.
        • Iwao H.
        • Otani S.
        • Nishizawa Y.
        Fibrillar collagen specifically regulates human vascular smooth muscle cell genes involved in cellular responses and the pericellular matrix environment.
        Circ. Res. 2001; 88: 460-467
        • Ito S.
        • Ishimaru S.
        • Wilson S.E.
        Inhibitory effect of type 1 collagen gel containing alpha-elastin on proliferation and migration of vascular smooth muscle and endothelial cells.
        Cardiovasc. Surg. 1997; 5: 176-183
        • Johnson E.
        • O'Brien Jr., F.
        • Werbitt R.
        Modification and characterization of permanent sympathectomy produced by the administration of guanethidine to newborn rats.
        Eur. J. Pharmacol. 1976; 37: 45-54
        • Johnson Jr., E.M.
        • Macia R.A.
        • Yellin T.O.
        Marked difference in the susceptibility of several species to guanethidine-induced chemical sympathectomy.
        Life Sci. 1977; 20: 107-112
        • Kacem K.
        • Seylaz J.
        • Issertial O.
        • Aubineau P.
        Chemical sympathectomy favours vimentin expression in arterial smooth muscle cells of young rats.
        J. Auton. Nerv. Syst. 1995; 53: 57-68
        • Kacem K.
        • Sercombe C.
        • Vicaut E.
        • Sercombe R.
        Sympathectomy causes aggravated lesion and dedifferentiation in large rabbit atherosclerotic arteries without involving nitric oxide.
        J. Vasc. Res. 2006; 43: 289-305
        • Karnik S.K.
        • Brooke B.S.
        • Bayes-Genis A.
        • Sorensen L.
        • Wythe J.D.
        • Schwartz R.S.
        • Keating M.T.
        • Li D.Y.
        A critical role for elastin signaling in vascular morphogenesis and disease.
        Development. 2003; 130: 411-423
        • Katsuda S.
        • Okada Y.
        • Minamoto T.
        • Oda Y.
        • Matsui Y.
        • Nakanishi I.
        Collagens in human atherosclerosis: immunohistochemical analysis using collagen type-specific antibodies.
        Arterioscler. Thromb. 1992; 12: 494-502
        • Kuzuya M.
        • Iguchi A.
        Role of matrix metalloproteinases in vascular remodeling.
        J. Atheroscler. Thromb. 2003; 10: 275-282
        • Labat-Robert J.
        • Robert L.
        Interaction between cells and extracellular matrix: signaling by integrins and the elastin–laminin receptor.
        Prog. Mol. Subcell. Biol. 2000; 25: 57-70
        • Lacolley P.
        • Glaser E.
        • Challande P.
        • Boutouyrie P.
        • Mignot J.P.
        • Duriez M.
        • Levy B.
        • Safar M.
        • Laurent S.
        Structural changes and in situ aortic pressure-diameter relationship in long-term chemical-sympathectomized rats.
        Am. J. Physiol. 1995; 269: H407-H416
        • Lelorier J.
        • Tremblay M.
        • de Champlain J.
        • Gattereau A.
        • Davingnon J.
        Effect of 6-hydroxydopamine on diet-induced hyperlipidemia and atherosclerosis in the rat.
        Can. J. Physiol. Pharmacol. 1976; 54: 83-85
        • Lindvall C.
        • Bjorklund A.
        The glyoxylic acid fluorescence histochemical method: a detailed account of the methodology for the visualization of central catecholamine neurons.
        Histochemistry. 1974; 39: 97-127
        • Orr A.W.
        • Lee M.Y.
        • Lemmon J.A.
        • Yurdagul Jr., A.
        • Gomez M.F.
        • Bortz P.D.
        • Wamhoff B.R.
        Molecular mechanisms of collagen isotype-specific modulation of smooth muscle cell phenotype.
        Arterioscler. Thromb. Vasc. Biol. 2009; 29: 225-231
        • Owens G.K.
        Regulation of differentiation of vascular smooth muscle cells.
        Physiol. Rev. 1995; 75: 487-517
        • Raines E.W.
        The extracellular matrix can regulate vascular cell migration, proliferation, and survival: relationships to vascular disease.
        Int. J. Exp. Pathol. 2000; 81: 173-182
        • Sarmento A.
        • Soares-da-Silva P.
        • Teixeira A.A.
        • Azevedo I.
        Effects of denervation induced by 6-hydroxydopamine on cell nucleus activity of arterial and cardiac cells of the dog.
        J. Auton. Pharmacol. 1987; 7: 119-126
        • Sartore S.
        • Chiavegato A.
        • Faggin E.
        • Franch R.
        • Puato M.
        • Ausoni S.
        • Pauletto P.
        Contribution of adventitial fibroblasts to neointima formation and vascular remodeling: from innocent bystander to active participant.
        Circ. Res. 2001; 89: 1111-1121
        • Shekhonin B.V.
        • Domogatsky S.P.
        • Muzykantov V.R.
        • Idelson G.L.
        • Rukosuev V.S.
        Distribution of type I, III, IV and V collagen in normal and atherosclerotic human arterial wall: immunomorphological characteristics.
        Coll. Relat. Res. 1985; 5: 355-368
        • Spofford C.M.
        • Chilian W.M.
        The elastin–laminin receptor functions as a mechanotransducer in vascular smooth muscle.
        Am. J. Physiol. Heart Circ. Physiol. 2001; 280: H1354-H1360
        • Timpl R.
        Macromolecular organization of basement membrane.
        Curr. Opin. Cell Biol. 1996; 8: 618-624
        • Villanueva I.
        • Piñón M.
        • Quevedo-Corona L.
        • Martínez-Olivares R.
        • Racotta R.
        Epinephrine and dopamine colocalization with norepinephrine in various peripheral tissues: guanethidine effects.
        Life Sci. 2003; 73: 1645-1653
        • Yamamoto M.
        • Nakamura H.
        • Yamato M.
        • Aoyagi M.
        • Yamamoto K.
        Retardation of phenotypic transition of rabbit arterial smooth muscle cells in three-dimensional primary culture.
        Exp. Cell Res. 1996; 225: 12-21
        • Yamamoto K.
        • Yamamoto M.
        • Yamamoto N.
        • Aoyagi M.
        Regulation of differentiated properties of vascular smooth muscle cells in atherosclerosis: role of extracellular matrix.
        Connect. Tissue. 2002; 34: 317-325