Advertisement

The rostral parvicellular reticular formation neurons mediate lingual nerve input to the rostral ventrolateral medulla

      Abstract

      In rats that had been anesthetized by urethane–chloralose, we investigated whether neurons in the rostral part of the parvicellular reticular formation (rRFp) mediate lingual nerve input to the rostral ventrolateral medulla (RVLM), which is involved in somato-visceral sensory integration and in controlling the cardiovascular system. We determined the effect of the lingual nerve stimulation on activity of the rRFp neurons that were activated antidromically by stimulation of the RVLM. Stimulation of the lingual trigeminal afferent gave rise to excitatory effects (10/26, 39%), inhibitory effects (6/26, 22%) and no effect (10/26, 39%) on the RVLM-projecting rRFp neurons. About two-thirds of RVLM-projecting rRFp neurons exhibited spontaneous activity; the remaining one-third did not. A half (13/26) of RVLM-projecting rRFp neurons exhibited a pulse-related activity, suggesting that they receive a variety of peripheral and CNS inputs involved in cardiovascular function.
      We conclude that the lingual trigeminal input exerts excitatory and/or inhibitory effects on a majority (61%) of the RVLM-projecting rRFp neurons, and their neuronal activity may be involved in the cardiovascular responses accompanied by the defense reaction.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Autonomic Neuroscience: Basic and Clinical
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Allen G.V.
        • Pronych S.P.
        Trigeminal autonomic pathways involved in nociception-induced reflex cardiovascular responses.
        Brain Res. 1997; 754: 269-278
        • Allen G.V.
        • Barbrick B.
        • Esser M.J.
        Trigeminal-parabrachial connections: possible pathway for nociception-induced cardiovascular reflex responses.
        Brain Res. 1996; 715: 125-135
        • Barman S.M.
        • Gebber G.L.
        Lateral tegmental field neurons of cat medulla: a source of basal activity of ventrolateral medullospinal sympathoexcitatory neurons.
        J. Neurophysiol. 1987; 57: 1410-1423
        • Barman S.M.
        • Gebber G.L.
        Subgroups of rostral ventrolateral medulla and caudal medullary raphe neurons based on patterns of relationship to sympathetic nerve discharge and axonal projections.
        J. Neurophysiol. 1997; 77: 65-75
        • Barman S.M.
        • Gebber G.L.
        Classification of caudal ventrolateral pontine neurons with sympathetic nerve-related activity.
        J. Neurophysiol. 1998; 80: 2433-2445
        • Barman S.M.
        • Orer H.S.
        • Gebber G.L.
        Differential effects of an NMDA and a non-NMDA receptor antagonist on medullary lateral tegmental field neurons.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002; 282: R100-R113
        • Bishop V.
        • Malliani A.
        • Thoren P.
        Cardiac mechanoreceptors.
        in: Shepherd J.T. Abboud F.M. Geiger S.R. Handbook of Physiology — The Cardiovascular System 3. American Physiological Society, Maryland1983: 497-555
        • Dellow P.G.
        • Morgan M.J.
        Trigeminal nerve inputs and central blood pressure change in the cat.
        Arch. Oral Biol. 1969; 14: 295-300
        • Donoghue S.
        • Felder R.B.
        • Jordan D.
        • Spyer K.M.
        The central projections of carotid baroreceptors and chemoreceptors in the cat: a neurophysiological study.
        J. Physiol. 1984; 347: 397-409
        • Esser M.J.
        • Pronych S.P.
        • Allen G.V.
        Trigeminal-reticular connections: possible pathways for nociception-induced cardiovascular reflex responses in the rat.
        J. Comp. Neurol. 1998; 391: 526-544
        • Gieroba Z.J.
        • Li Y.W.
        • Blessing W.W.
        Characteristics of caudal ventrolateral medullary neurons antidromically activated from rostral ventrolateral medulla in the rabbit.
        Brain Res. 1992; 582: 196-207
        • Guyenet P.G.
        Role of the ventral medulla oblongata in blood pressure regulation.
        in: Loewy A.D. Spyer K.M. Central Regulation of Autonomic Functions. Oxford University Press, New York1990: 145-167
        • Guyenet P.G.
        Neural structures that mediate sympathoexcitation during hypoxia.
        Respir. Physiol. 2000; 121: 147-162
        • Hanamori T.
        • Kunitake T.
        • Kato K.
        • Kannan H.
        Fibre types of the lingual branch of the trigeminal nerve, chorda tympani, lingual–tonsilar and pharyngeal branches of the glossopharyngeal nerve, and superior laryngeal nerve and their relation to the cardiovascular responses in rats.
        Neurosci. Lett. 1996; 219: 49-52
        • Haselton J.R.
        • Guyenet P.G.
        Central respiratory modulation of medullary sympathoexcitatory neurons in the rat.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 1989; 256: R739-R750
        • Ideguchi S.
        • Hotta H.
        • Suzuki A.
        • Umino M.
        Trigeminally induced cardiovascular reflex responses in spinalized rats.
        J. Auton. Nerv. Syst. 2000; 79: 129-135
        • Inoue T.
        • Chandler S.H.
        • Goldberg L.J.
        Neuropharmacological mechanisms underlying rhythmical discharge in trigeminal interneurons during fictive mastication.
        J. Neurophysiol. 1994; 71: 2061-2073
        • Ishizuka K.
        • Satoh Y.
        • Takahashi H.
        • Murakami T.
        Responses of the neurons in the rostral parvicellular reticular formation to stimulation of the chorda-tympani nerve in the rat.
        Dent. Jpn. 2001; 37: 32-34
        • Ishizuka K.
        • Oskutyte D.
        • Satoh Y.
        • Murakami T.
        Multi-source inputs converge on the superior salivatory nucleus neurons in anaesthetized rat.
        Auton. Neurosci. 2010; 156: 104-110
        • Jeske I.
        • Morrison S.F.
        • Cravo S.L.
        • Reis D.J.
        Identification of baroreceptor reflex interneurons in caudal ventrolateral medulla.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 1993; 264: R169-R178
        • Koganezawa T.
        • Shimomura Y.
        • Terui N.
        The role of the RVLM neurons in the viscero-sympathetic reflex: a mini review.
        Auton. Neurosci. 2008; 142: 17-19
        • Koshiya N.
        • Gyenet P.G.
        NTS neurons with carotid chemoreceptor inputs arborize in the rostral ventrolateral medulla.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 1996; 270: R1273-R1278
        • Koshiya N.
        • Gyenet P.G.
        Tonic sympathetic chemoreflex after blockade of respiratory rhythmogenesis in the rat.
        J. Physiol. 1996; 491: 859-869
        • Kumada M.
        • Dampney R.A.L.
        • Reis D.J.
        The trigeminal depressor response: a novel vasodepressor response originating from the trigeminal system.
        Brain Res. 1977; 119: 305-326
        • Kumada M.
        • Terui N.
        • Kuwaki T.
        Arterial baroreceptor reflex: its central and peripheral neural mechanisms.
        Prog. Neurobiol. 1990; 35: 331-361
        • Lipski J.
        Antidromic activation as an analytic tool in the study of the central nervous system.
        J. Neurosci. Methods. 1981; 4: 1-32
        • Loewy A.D.
        Anatomy of the autonomic nervous system: an overview.
        in: Loewy A.D. Spyer K.M. Central Regulation of Autonomic Functions. Oxford University Press, New York1990: 3-16
        • Mandel D.A.
        • Shreihofer A.M.
        Central respiratory modulation of barosensitive neurons in rat caudal vetrolateral medulla.
        J. Physiol. 2006; 572: 881-896
        • McCulloch P.F.
        • Pannenton W.M.
        • Guyenet P.G.
        The rostral ventrolateral medulla mediates the sympathoactivation produced by chemical stimulation of the rat nasal mucosa.
        J. Physiol. 1999; 516: 471-484
        • Moreira T.S.
        • Takakura A.C.
        • Colombari E.
        • Guyenet P.G.
        Central chemoreceptors and sympathetic vasomotor outflow.
        J. Physiol. 2006; 577: 369-386
        • Morrison S.F.
        • Reis D.J.
        Reticulospinal vasomotor neurons in the RVL mediate the somatosympathetic reflex.
        Am. J. Physiol. 1989; 256: R1084-R1097
        • Ootsuka Y.
        • Rong W.
        • Koganezawa T.
        • Terui N.
        Rhythmic activities of the sympatho-excitatory neurons in the medulla of rabbits: neurons controlling cutaneous vasomotion.
        Auton. Neurosci. 2002; 101: 48-59
        • Oskutyte D.
        • Ishizuka K.
        • Satoh Y.
        • Murakami T.
        Ionotropic NMDA receptor evokes an excitatory response in superior salivatory nucleus neurons in the rats.
        Auton. Neurosci. 2004; 110: 98-107
        • Oskutyte D.
        • Ishizuka K.
        • Satoh Y.
        • Murakami T.
        Rostral parvicellular reticular formation neurons projecting to rostral ventrolateral medulla receive cardiac inputs in anesthetized rats.
        Neurosci. Lett. 2006; 405: 236-240
      1. Paxinos G. Watson C. The Rat Brain: In Stereotaxic Coordinate. Fifth edition. Elsevier Academic Press, 2005
        • Satoh Y.
        • Ishizuka K.
        • Oskutyte D.
        • Murakami T.
        Role of the parvicellular reticular formation in facilitating the jaw-opening reflex in rats by stimulation of red nucleus.
        Brain Res. 2006; 1083: 145-150
        • Sévoz-Couch C.
        • Nosjean A.
        • Franc B.
        • Hamon M.
        • Laguzzi R.
        Dorsal medullary 5-HT3 receptors and sympathetic premotor neurons in the rat.
        J. Physiol. 1998; 508: 747-762
        • Shammah-Lagnado S.J.
        • Costa M.S.
        • Ricardo J.A.
        Afferent connections of the parvocellular reticular formation: a horseradish peroxidase study in the rat.
        Neuroscience. 1992; 50: 403-425
        • Siddall P.J.
        • Polson J.W.
        • Dampney R.A.
        Descending antinociceptive pathway from the rostral ventrolateral medulla: a correlative anatomical and physiological study.
        Brain Res. 1994; 645: 61-68
        • Sun M.K.
        • Spyer K.M.
        Nociceptive inputs into rostral ventrolateral medulla-spinal vasomotor neurones in rats.
        J. Physiol. 1991; 436: 685-700
        • Sun M.K.
        • Spyer K.M.
        Responses of rostroventrolateral medulla spinal vasomotor neurones to chemoreceptor stimulation in rats.
        J. Auton. Nerv. Syst. 1991; 33: 79-84
        • Takamatsu J.
        • Inoue T.
        • Tsubokura M.
        • Suganuma T.
        • Furuta R.
        • Kuwawa T.
        Involvement of reticular neurons located dorsal to the facial nucleus in activation of the jaw-closing muscle in rats.
        Brain Res. 2005; 1055: 93-102
        • Ter Horst G.J.
        • Copray J.C.
        • Liem R.S.
        • Van Willigen J.D.
        Projections from the rostral parvocellular reticular formation to pontine and medullary nuclei in the rat: involvement in autonomic regulation and orofacial motor control.
        Neuroscience. 1991; 40: 735-758
        • Terui N.
        • Saeki Y.
        • Kumada M.
        Barosensory neurons in the ventrolateral medulla in rabbits and their responses to various afferent inputs from peripheral and central sources.
        Jpn J. Physiol. 1986; 36: 1141-1164
        • Terui N.
        • Saeki Y.
        • Kumada M.
        Confluence of barosensory and nonbarosensory inputs at neurons in the ventrolateral medulla in rabbits.
        Can. J. Physiol. Pharmacol. 1987; 65: 1584-1590
        • Terui N.
        • Masuda N.
        • Saeki Y.
        • Kumada M.
        Activity of barosensitive neurons in the caudal ventrolateral medulla that send axonal projections to the rostral ventrolateral medulla in rabbits.
        Neurosci. Lett. 1990; 118: 211-214
        • Travers J.B.
        • Rinaman L.
        Identification of lingual motor control circuits using two strains of pseudorabies virus.
        Neuroscience. 2002; 115: 1139-1151
        • Zagon A.
        Activation of cardiac vagal afferents facilitates late vagal inhibition in neurones of the rostral ventrolateral medulla oblongata bilaterally.
        Brain Res. 2000; 854: 172-177
        • Zagon A.
        Sciatic and vagal sensory inputs converge onto non-baroreceptive neurones of the rostral ventrolateral medulla.
        Brain Res. 2001; 896: 64-68
        • Zagon A.
        Synaptic interactions in neurones of the rat rostral ventrolateral medulla oblongata.
        Brain Res. Protoc. 2001; 7: 21-29
        • Zagon A.
        • Hughes D.I.
        Gating of vagal inputs by sciatic afferents in nonspinally projecting neurons in the rat rostral ventrolateral medulla oblongata.
        Eur. J. Neurosci. 2001; 13: 781-792
        • Zagon A.
        • Spyer K.M.
        Stimulation of aortic nerve evokes three different response patterns in neurons of rostral VLM of the rat.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 1996; 271: R1720-R1728
        • Zagon A.
        • Ishizuka K.
        • Rocha I.
        • Spyer K.M.
        Late vagal inhibition in neurons of the ventrolateral medulla oblongata in the rat.
        Neuroscience. 1999; 92: 877-888
        • Zagon A.
        • Rocha I.
        • Ishizuka K.
        • Spyer K.M.
        Vagal modulation of responses elicited by stimulation of the aortic depressor nerve in neurons of the rostral ventrolateral medulla oblongata in the rat.
        Neuroscience. 1999; 92: 889-899
        • Zerali-Mailly F.
        • Pinganaud G.
        • Dauvergne C.
        • Buisseret P.
        • Buisseret-Delmas C.
        Trigemino-reticulo-facial and trigemino-reticulo-hypoglossal pathways in the rat.
        J. Comp. Neurol. 2001; 429: 80-93