Advertisement

Extended longitudinal analysis of arterial pressure and heart rate control in unanesthetized rats with type 1 diabetes

      Abstract

      We recorded arterial pressure (BP) and heart rate (HR) in type-1 diabetic rats vs. controls for >6 months. Diabetic rats (DIAB) were maintained on insulin from the day glucose >250 mg/dl (“Day 0”). Weight was similar between groups until ~3 weeks before Day 0 when the weight in DIAB transiently lagged the controls (CONT); this difference was maintained throughout the study, but both groups otherwise gained weight in parallel. Plasma glucose attained 371±109 (SD) mg/dl by day 1 in DIAB. Mean BP was similar across groups, and declined through the initial 4–6 months in both the CONT (at −0.06±0.04 mm Hg/day) and in the DIAB (at −0.14±0.21 mm Hg/day; NS vs. CONT). HR in the CONT (Month 1: 341±13 bpm) exceeded DIAB (325±25 bpm) through ~6 months after Day 0, and also decreased progressively over this period in CONT (−0.19±0.14 bpm/day) and DIAB (−0.29±0.23 bpm/day; NS vs. CONT) before leveling. The BP power within 0.35–0.45 Hz changed during the 90 min before vs. after the transition from dark to light, and light to dark; there were no between group differences. The slope of the log–log linear portion of the BP power spectrum between 1.0/h and 1/min was similar across groups, and increased in both from month 1 to month 6. Regulatory mechanisms maintain similar profiles in BP and HR in diabetic vs. control animals through the initial half year of the disease.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Autonomic Neuroscience: Basic and Clinical
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • ACCORD Study Group
        Effects of intensive blood-pressure control in type 2 diabetes mellitus.
        N. Engl. J. Med. 2010; 362: 1575-1585
        • Addicks K.
        • Boy C.
        • Rosen P.
        Sympathetic autonomic neuropathy in the heart of the spontaneous diabetic BB rat.
        Anat. Anz. 1993; 175: 253-257
        • Akselrod S.
        • Gordon D.
        • Ubel F.A.
        • Shannon D.C.
        • Berger A.C.
        • Cohen R.J.
        Power spectrum analysis of heart rate fluctuation : a quantitative probe of beat-to-beat cardiovascular control.
        Science. 1981; 213: 220-222
        • American Diabetes Association and American Academy of Neurology
        Report and recommendations of the San Francisco Conference on diabetic neuropathy (Consensus Statement).
        Diabetes. 1988; 37: 1000-1004
        • Anigbogu C.N.
        • Adigun S.A.
        Blood pressure, heart rate and autonomic reflexes in Plasmodium berghei malaria infection.
        Niger. Q. J. Hosp. Med. 1996; 6: 47-51
        • Anigbogu C.N.
        • Speakman R.
        • Silcox D.
        • Williams D.
        • Brown L.
        • Brown D.
        • Karounos D.
        • Randall D.
        Changes in autonomic cardiovascular regulation in diabetes.
        FASEB J. 2005; 19: A1290
        • Bidani A.K.
        • Picken M.
        • Hacioglu R.
        • Williamson G.
        • Griffin K.A.
        Spontaneously reduced blood pressure load in the rat streptozotocin-induced diabetes model: potential pathogenetic relevance.
        Am. J. Physiol. Renal Physiol. 2007; 292: F647-F654
        • Boysen A.
        • Lewin M.A.G.
        • Kecker W.
        • Leichter H.E.
        • Uhlemann F.
        Autonomic function testing in children and adolescents with diabetes mellitus.
        Pediatr. Diabetes. 2007; 8: 261-264
        • Brown D.R.
        • Brown L.V.
        • Patwardham A.
        • Randall D.C.
        Sympathetic activity and blood pressure are tightly coupled at 0.4 Hz in conscious rat.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 1994; 267: R1378-R1384
        • Brown D.R.
        • Cassis L.A.
        • Silcox D.L.
        • Brown L.V.
        • Randall D.C.
        Empirical and theoretical analysis of the extremely low frequency arterial blood pressure power spectrum in unanesthetized rat.
        Am. J. Physiol. Heart Circ. Physiol. 2006; 291: H2816-H2824
        • Burgess D.E.
        • Hundley J.C.
        • Li S.-G.
        • Randall D.C.
        • Brown D.R.
        A first-order differential-delay equation for the baroreflex predicts the 0.4 Hz blood pressure rhythm in rats.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 1997; 273: R1878-R1884
        • Burgess D.E.
        • Zimmerman T.A.
        • Wise M.T.
        • Li S.-G.
        • Randall D.C.
        • Brown D.R.
        Low-frequency renal sympathetic nerve activity, arterial BP, stationary “1/f noise,” and the baroreflex.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 1999; 277: R894-R903
        • Burgess D.
        • Randall D.C.
        • Stocker S.D.
        Influence of diabetes on baroreflex (BR) sensitivity of sympathetic nerve activity (SNA).
        FASEB J. 2009; 23: 990.14
        • Butler G.C.
        • Yamamoto Y.
        • Hughson R.L.
        Fractal nature of short-term systolic BP and HR variability during lower body negative pressure.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 1994; 267: R26-R33
        • Cerutti C.
        • Barres C.
        • Paultre C.
        Baroreflex modulation of blood pressure and heart rate variabilities in rats: assessment by spectral analysis.
        Am. J. Physiol. Heart Circ. Physiol. 1994; 266: H1993-H2000
        • Chappel C.I.
        • Chappel W.R.
        The discovery of the development of the BB rat colony: an animal model of spontaneous diabetes mellitus.
        Metabolism. 1983; 32: 8-10
        • Cherian P.V.
        • Kamijo M.
        • Angelides K.J.
        • Sima A.A.
        Nodal Na+ channel displacement is associated with nerve-conduction slowing in the chronically diabetic BB/W rat: prevention by aldose reductase inhibition.
        J. Diabetes Complications. 1996; 10: 192-200
        • Czupryniak L.
        • Saryusz-Wolska M.
        • Pawlowski M.
        • Loba J.
        Elevated systolic blood pressure is present in almost all individuals with newly diagnosed diabetes.
        J. Human Hypertens. 2006; 20: 231-233
        • Ewing D.J.
        • Martyn C.N.
        • Young R.J.
        • Clarke B.F.
        The value of cardiovascular autonomic function tests: 10-year experience in diabetes.
        Diabetes Care. 1985; 8: 491-498
        • Fitzovich D.E.
        • Randall D.C.
        Modulation of the baroreflex by varying insulin and glucose in conscious dogs.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 1990; 258: R624-R633
        • Freeman R.
        Autonomic peripheral neuropathy.
        Lancet. 2005; 365: 1259-1270
        • Gerritsen J.
        • Dekker J.M.
        • TenVoorde B.J.
        • Kostense P.J.
        • Heine R.J.
        • Bouter L.M.
        • Heethaar R.M.
        • Stehouwer D.D.
        Impaired autonomic function is associated with increased mortality, especially in subjects with diabetes, hypertension, or a history of cardiovascular disease: the Hoorn Study.
        Diabetes Care. 2001; 24: 1793-1798
        • Hilsted J.
        Pathophysiology in diabetic autonomic neuropathy: cardiovascular, hormonal and metabolic studies.
        Diabetes. 1982; 31: 730-737
        • Hosking D.J.
        • Bennett T.
        • Hampton J.R.
        Diabetic autonomic neuropathy.
        Diabetes. 1978; 27: 1043-1055
        • Javorka M.
        • Javorkova J.
        • Tonhajzerova I.
        • Jovorka K.
        Parasympathetic versus sympathetic control of the cardiovascular system in young patients with type 1 diabetes mellitus.
        Clin. Physiol. Funct. Imaging. 2005; 25: 270-274
        • Kahn J.K.
        • Sissan J.C.
        • Vinik A.L.
        QT interval prolongation and sudden cardiac death in autonomic neuropathy.
        J. Clin. Endocrinol. Metab. 1987; 64 (751-&54)
      1. Kaufman F.R. Medical Management of Type 1 Diabetes. 5th edition. American Diabetes Association, Alexandria, VA2008
        • Krause M.
        • Rüdiger H.
        • Bald M.
        • Näke A.
        • Paditz E.
        Autonomic blood pressure control in children and adolescents with type 1 diabetes mellitus.
        Pediatr. Diabetes. 2009; 10: 255-263
        • Mancia G.
        The association of hypertension and diabetes: prevalence, cardiovascular risk and protection by blood pressure reduction.
        Acta Diabetol. 2005; 42: S17-S25
        • Morfis L.
        • Schwartz R.S.
        • Poulos R.
        • Howes L.G.
        Blood pressure changes in acute cerebral infarction and hemorrhage.
        Stroke. 1997; 28: 1401-1405
        • Pfeifer M.A.
        • Cook D.
        • Brodsky J.
        • Tice D.
        • Reenan A.
        • Swedine S.
        • Halter J.B.
        • Proter Jr., D.
        Quantitative evaluation of cardiac parasympathetic activity in normal and diabetic man.
        Diabetes. 1982; 31: 339-345
        • Pozza R.D.
        • Bechtold S.
        • Bonfig W.
        • Putzker S.
        • Kozlik-Feldmann R.
        • Schwarz H.-P.
        • Netz H.
        Impaired short-term blood pressure regulation and autonomic dysbalance in children with type 1 diabetes mellitus.
        Diabetologia. 2007; 50: 2417-2423
        • Randall D.C.
        • Brown D.R.
        • Raisch R.M.
        • Randall W.C.
        SA-nodal parasympathectomy delineates autonomic contributions to heart rate power spectrum.
        Am. J. Physiol. Heart Circ. Physiol. 1991; 260: H985-H988
        • Randall D.C.
        • Baldridge B.R.
        • Zimmerman E.E.
        • Carroll J.J.
        • Speakman R.O.
        • Brown D.R.
        • Taylor R.F.
        • Patwardhan A.
        • Burgess D.E.
        Blood pressure power within frequency range around 0.4 Hz in rat conforms to self-similar scaling following spinal cord transection.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005; 288: R737-R741
        • Randall D.C.
        • Speakman R.O.
        • Silcox D.L.
        • Brown L.C.
        • Brown D.R.
        • Gong M.C.
        • Patwardhan A.
        • Reynolds L.R.
        • Karounos D.G.
        • Burgess D.E.
        • Anigbogu C.N.
        Longitudinal analysis of arterial blood pressure and heart rate response to acute behavioral stress in rats with type 1 diabetes mellitus and in age-matched controls.
        Front Physiol. 2011; 2: 53https://doi.org/10.3389/fphys.2011.00053
        • Sanyal S.N.
        • Arita M.
        • Ono K.
        Inhomogeneous derangement of cardiac autonomic nerve control in diabetic rats.
        Jpn. Circ. J. 2002; 66: 283-288
        • Schmidt R.E.
        • Dorsey D.A.
        • Beaudet L.N.
        • Peterson R.G.
        Analysis of the Zucker diabetic fatty (ZDF) type 2 diabetic rat model suggests a neurotrophic role for insulin/IGF-I in diabetic autonomic neuropathy.
        Am. J. Pathol. 2003; 163: 21-28
        • Sima A.A.
        • Zhang W.
        • Xu G.
        • Sugimoto K.
        • Guberski D.
        • Yorek M.A.
        A comparison of diabetic polyneuropathy in type II diabetic BBZDR/Wor rats and in type I BB/Wor rats.
        Diabetiologia. 2000; 43: 786-793
        • UK Prospective Diabetes Study Group
        Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38.
        Br. Med. J. 1998; 317: 703-713
        • Van Vliet B.N.
        • Chafe L.L.
        • Antic V.
        • Schnyder-Candrian S.
        • Montani J.-P.
        Direct and indirect methods used to study arterial blood pressure.
        J. Pharmacol. Toxicol. Methods. 2000; 44: 361-373
        • Vinik A.I.
        • Ziegler D.
        Diabetic cardiovascular autonomic neuropathy.
        Circ. 2007; 115: 387-397
        • Vinik A.I.
        • Maser R.E.
        • Mitchell B.D.
        • Freeman R.
        Diabetic autonomic neuropathy.
        Diabetes Care. 2003; 26: 1553-1579
        • Voss R.F.
        Random fractals: self-affinity in noise, music, mountains and clouds.
        Physica D. 1989; 38: 362-371
        • Wang H.
        • Layton B.E.
        • Sastry A.M.
        Nerve collagens from diabetic and nondiabetic Sprague–Dawley and biobreeding rats: an atomic force microscopy study.
        Diabetes Metab. Res. Rev. 2003; 19: 288-298
        • Wang S.
        • Randall D.C.
        • Knapp C.F.
        • Patwardhan A.R.
        • Nelson K.R.
        • Karounos D.G.
        • Evans J.M.
        Blood pressure regulation in diabetics with and without peripheral neuropathy.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012; 302: R541-R550
        • Wornell G.W.
        Wavelet-based representations for 1/f family of fractal process.
        Proc. IEEE. 1993; 81: 1428-1450
        • Yagihashi S.
        • Sima A.A.
        Diabetic autonomic neuropathy in the BB rat. Ultrastructural and morphometric changes in sympathetic nerves.
        Diabetes. 1985; 34: 558-564
        • Yagihashi S.
        • Sima A.A.
        Diabetic autonomic neuropathy. The distribution of structural changes in sympathetic nerves of the BB rat.
        Am. J. Pathol. 1985; 121: 138-147
        • Zhang W.X.
        • Chakrabarti S.
        • Greene D.A.
        • Sima A.A.
        Diabetic autonomic neuropathy in BB rats and the effect of ARI treatment on heart rate variability and vagus nerve structure.
        Diabetes. 1990; 39: 613-618