Advertisement
Review| Volume 176, ISSUE 1-2, P11-31, June 2013

Download started.

Ok

Structure activity relationship of synaptic and junctional neurotransmission

  • Raj K. Goyal
    Correspondence
    Corresponding author at: Harvard Medical School, VA Medical Center, 1400 VFW Parkway, West Roxbury, MA 02132, USA. Tel.: +1 8572035612; fax: +1 857 203 5592.
    Affiliations
    Center for Swallowing and Motility Disorders, GI Division, VA Boston Healthcare System and Harvard Medical School, Boston, USA
    Search for articles by this author
  • Arun Chaudhury
    Affiliations
    Center for Swallowing and Motility Disorders, GI Division, VA Boston Healthcare System and Harvard Medical School, Boston, USA
    Search for articles by this author

      Abstract

      Chemical neurotransmission may include transmission to local or remote sites. Locally, contact between ‘bare’ portions of the bulbous nerve terminal termed a varicosity and the effector cell may be in the form of either synapse or non-synaptic contact. Traditionally, all local transmissions between nerves and effector cells are considered synaptic in nature. This is particularly true for communication between neurons. However, communication between nerves and other effectors such as smooth muscles has been described as nonsynaptic or junctional in nature. Nonsynaptic neurotransmission is now also increasingly recognized in the CNS. This review focuses on the relationship between structure and function that orchestrate synaptic and junctional neurotransmissions. A synapse is a specialized focal contact between the presynaptic active zone capable of ultrafast release of soluble transmitters and the postsynaptic density that cluster ionotropic receptors. The presynaptic and the postsynaptic areas are separated by the ‘closed’ synaptic cavity. The physiological hallmark of the synapse is ultrafast postsynaptic potentials lasting milliseconds. In contrast, junctions are juxtapositions of nerve terminals and the effector cells without clear synaptic specializations and the junctional space is ‘open’ to the extracellular space. Based on the nature of the transmitters, postjunctional receptors and their separation from the release sites, the junctions can be divided into ‘close’ and ‘wide’ junctions. Functionally, the ‘close’ and the ‘wide’ junctions can be distinguished by postjunctional potentials lasting ~1 s and tens of seconds, respectively. Both synaptic and junctional communications are common between neurons; however, junctional transmission is the rule at many neuro-non-neural effectors.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Autonomic Neuroscience: Basic and Clinical
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Adams P.R.
        • Jones S.W.
        • Pennefather P.
        • Brown D.A.
        • Koch C.
        • Lancaster B.
        Slow synaptic transmission in frog sympathetic ganglia.
        J. Exp. Biol. 1986; 124: 259-285
        • Agnati L.F.
        • Fuxe K.
        • Zoli M.
        • Ozini I.
        • Toffano G.
        • Ferraguti F.
        A correlation analysis of the regional distribution of central enkephalin and beta-endorphin immunoreactive terminals and of opiate receptors in adult and old male rats. Evidence for the existence of two main types of communication in the central nervous system: the volume transmission and the wiring transmission.
        Acta Physiol. Scand. 1986; 128: 201-207
        • Agnati L.F.
        • Guidolin D.
        • Guescini M.
        • Genedani S.
        • Fuxe K.
        Understanding wiring and volume transmission.
        Brain Res. Rev. 2010; 64: 137-159
        • Aoki C.
        • Miko I.
        • Oviedo H.
        • Mikeladze-Dvali T.
        • Alexandre L.
        • Sweeney N.
        • Bredt D.S.
        Electron microscopic immunocytochemical detection of PSD-95, PSD-93, SAP-102, and SAP-97 at postsynaptic, presynaptic, and nonsynaptic sites of adult and neonatal rat visual cortex.
        Synapse. 2001; 40: 239-257
        • Arancibia-Carcamo I.L.
        • Moss S.J.
        Molecular organization and assembly of the central inhibitory postsynapse.
        Results Probl. Cell Differ. 2006; 43: 25-47
        • Ariel P.
        • Ryan T.A.
        New insights into molecular players involved in neurotransmitter release.
        Physiology (Bethesda). 2012; 27: 15-24
        • Ascher P.
        • Large W.A.
        • Rang H.P.
        Studies on the mechanism of action of acetylcholine antagonists on rat parasympathetic ganglion cells.
        J. Physiol. 1979; 295: 139-170
        • Basbaum C.B.
        Effects of magnesium ions on adrenergic nerve terminals.
        J. Neurocytol. 1974; 3: 753-762
        • Baumgarten H.G.
        • Holstein A.F.
        • Owman C.
        Auerbach's plexus of mammals and man: electron microscopic identification of three different types of neuronal processes in myenteric ganglia of the large intestine from rhesus monkeys, guinea-pigs and man.
        Z. Zellforsch. Mikrosk. Anat. 1970; 106: 376-397
        • Bayguinov P.O.
        • Hennig G.W.
        • Smith T.K.
        Ca2+ imaging of activity in ICC-MY during local mucosal reflexes and the colonic migrating motor complex in the murine large intestine.
        J. Physiol. 2010; 588: 4453-4474
        • Benardo L.S.
        Separate activation of fast and slow inhibitory postsynaptic potentials in rat neocortex in vitro.
        J. Physiol. 1994; 476: 203-215
        • Ben-Horin S.
        • Chowers Y.
        Neuroimmunology of the gut: physiology, pathology, and pharmacology.
        Curr. Opin. Pharmacol. 2008; 8: 490-495
        • Bennett M.R.
        Autonomic neuromuscular transmission.
        in: Davson H. Greenfield A.D.M. Whittam R. Brindley G.S. Monographs of the Physiological Society. Cambridge University Press, London1972: 1-279
        • Bennett M.V.L.
        A comparison of electrically and chemically mediated transmission.
        in: Pappas G.D. Purpura D.P. Structure and Function of Synapses. Raven Press, New York1972
        • Bennett M.R.
        Non-adrenergic non-cholinergic (NANC) transmission to smooth muscle: 35 years on.
        Prog. Neurobiol. 1997; 52: 159-195
        • Bennett M.
        The early history of the synapse: from Plato to Sherrington.
        in: History of the Synapse. Harwood Academic Publishers, Amsterdam2005: 1-25
        • Bennett M.R.
        • Gibson W.G.
        On the contribution of quantal secretion from close-contact and loose-contact varicosities to the synaptic potentials in the vas deferens.
        Philos. Trans. R. Soc. Lond. B Biol. Sci. 1995; 347: 187-204
        • Bian X.C.
        • Bornstein J.C.
        • Bertrand P.P.
        Nicotinic transmission at functionally distinct synapses in descending reflex pathways of the rat colon.
        Neurogastroenterol. Motil. 2003; 15: 161-171
        • Bloom F.E.
        • Aghajanian G.K.
        An electron microscopic analysis of large granular synaptic vesicles of the brain in relation to monoamine content.
        J. Pharmacol. Exp. Ther. 1968; 159: 261-273
        • Bloom F.E.
        • Aghajanian G.K.
        Fine structural and cytochemical analysis of the staining of synaptic junctions with phosphotungstic acid.
        J. Ultrastruct. Res. 1968; 22: 361-375
        • Bolton T.B.
        • Large W.A.
        Are junction potentials essential? Dual mechanism of smooth muscle cell activation by transmitter released from autonomic nerves.
        Q. J. Exp. Physiol. 1986; 71: 1-28
        • Bornstein J.C.
        • Furness J.B.
        • Kunze W.A.
        • Bertrand P.P.
        Enteric reflexes that influence motility.
        in: Brookes S.J.H. Costa M. Innervation of the Gastrointestinal Tract. Taylor & Francis, London2002: 1-55 (1–55)
        • Brain K.L.
        • Cottee L.J.
        • Bennett M.R.
        Varicosities of single sympathetic nerve terminals possess syntaxin zones and different synaptotagmin N-terminus labelling following stimulation.
        J. Neurocytol. 1997; 26: 491-500
        • Bridgman P.C.
        Myosin motor proteins in the cell biology of axons and other neuronal compartments.
        Results Probl. Cell Differ. 2009; 48: 91-105
        • Brookes S.J.H.
        • Costa M.
        Functional histoanatomy of the enteric nervous system.
        in: Johnson L.R. Physiology of the Gastrointestinal Tract. Academic Press, 2006: 577-602
        • Bunch L.
        • Erichsen M.N.
        • Jensen A.A.
        Excitatory amino acid transporters as potential drug targets.
        Expert Opin. Ther. Targets. 2009; 13: 719-731
        • Burnstock G.
        The changing face of autonomic neurotransmission.
        Acta Physiol. Scand. 1986; 126: 67-91
        • Burnstock G.
        Physiology and pathophysiology of purinergic neurotransmission.
        Physiol. Rev. 2007; 87: 659-797
        • Burnstock G.
        Non-synaptic transmission at autonomic neuroeffector junctions.
        Neurochem. Int. 2008; 52: 14-25
        • Burnstock G.
        • Verkhratsky A.
        Vas deferens—a model used to establish sympathetic cotransmission.
        Trends Pharmacol. Sci. 2010; 31: 131-139
        • Byrne J.
        Postsynaptic potentials and synaptic integration.
        in: Byrne J.H. Roberts J.L. From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience. Elsevier, 2009: 469-488
        • Caesar R.
        • Edwards G.A.
        • Ruska H.
        Architecture and nerve supply of mammalian smooth muscle tissue.
        J. Biophys. Biochem. Cytol. 1957; 3: 867-878
        • Cajal S.R.
        Objective evidence of the anatomical unity of nerve cells.
        in: Cajal S.R. Neuron Theory or Reticular Theory? Consejo Superior de Investigaciones Cientificas, Madrid1954: 1-10
        • Castelucci P.
        • Robbins H.L.
        • Poole D.P.
        • Furness J.B.
        The distribution of purine P2X(2) receptors in the guinea-pig enteric nervous system.
        Histochem. Cell Biol. 2002; 117: 415-422
        • Chaudhury A.
        • He X.D.
        • Goyal R.K.
        Role of PSD95 in membrane association and catalytic activity of nNOSalpha in nitrergic varicosities in mice gut. American Journal of Physiology.
        Gastrointest. Liver Physiol. 2009; 297 (Erratum in:) (Oct): G806-G813Am. J. Physiol. Gastrointest. Liver Physiol. 2010; 299 (Erratum in:) (Oct): G100-2
        • Chaudhury A.
        • He X.D.
        • Goyal R.K.
        Myosin Va plays a key role in nitrergic neurotransmission by transporting nNOS{alpha} to enteric varicosity membrane.
        Am. J. Physiol. Gastrointest. Liver Physiol. 2011; 301: G498-G507
        • Chaudhury A.
        • He X.D.
        • Goyal R.K.
        Role of myosin Va in purinergic vesicular neurotransmission in the gut. American Journal of Physiology.
        Gastrointest. Liver Physiol. 2012; 302: G598-G607
        • Cingolani L.A.
        • Goda Y.
        Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy.
        Nat. Rev. Neurosci. 2008; 9: 344-356
        • Clark B.A.
        • Cull-Candy S.G.
        Activity-dependent recruitment of extrasynaptic NMDA receptor activation at an AMPA receptor-only synapse.
        J. Neurosci. 2002; 22: 4428-4436
        • Coggan J.S.
        • Bartol T.M.
        • Esquenazi E.
        • Stiles J.R.
        • Lamont S.
        • Martone M.E.
        • Berg D.K.
        • Ellisman M.H.
        • Sejnowski T.J.
        Evidence for ectopic neurotransmission at a neuronal synapse.
        Science. 2005; 309: 446-451
        • Cole A.E.
        • Nicoll R.A.
        Characterization of a slow cholinergic post-synaptic potential recorded in vitro from rat hippocampal pyramidal cells.
        J. Physiol. 1984; 352: 173-188
        • Colonnier M.
        Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study.
        Brain Res. 1968; 9: 268-287
        • Conroy W.G.
        • Berg D.K.
        Neurons can maintain multiple classes of nicotinic acetylcholine receptors distinguished by different subunit compositions.
        J. Biol. Chem. 1995; 270: 4424-4431
        • Conroy W.G.
        • Liu Z.
        • Nai Q.
        • Coggan J.S.
        • Berg D.K.
        PDZ-containing proteins provide a functional postsynaptic scaffold for nicotinic receptors in neurons.
        Neuron. 2003; 38: 759-771
        • Couteaux R.
        Morphological and cytochemical observations on the post-synaptic membrane at motor end-plates and ganglionic synapses.
        Exp. Cell Res. 1958; 14: 294-322
        • Cowan W.M.
        • Kandel E.R.
        A brief history of synapses and synaptic transmission.
        in: Cowan W.M. Sudhof T.C. Stevens C.F. Synapses. The Johns Hopkins University Press, Baltimore2003: 1-88
        • Cuadras J.
        Non-synaptic release from dense-cored vesicles occurs at all terminal types in crayfish neuropile.
        Brain Res. 1989; 477: 332-335
        • Dale H.
        Transmission of Effects from Nerve-Endings: A Survey of the Significance of Present Knowledge.
        University Press, 1952
        • Dani J.A.
        • Bertrand D.
        Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system.
        Annu. Rev. Pharmacol. Toxicol. 2007; 47: 699-729
        • De Camilli P.H.V.
        • Takei K.
        • Mugnaini E.
        The Structure of Synapses. The Johns Hopkins University Press, Baltimore2003: 89-133
        • Dierig S.
        Urbanization, place of experiment and how the electric fish was caught by Emil du Bois-Reymond.
        J. Hist. Neurosci. 2000; 9: 5-13
        • Dittman J.
        • Ryan T.A.
        Molecular circuitry of endocytosis at nerve terminals.
        Annu. Rev. Cell Dev. Biol. 2009; 25: 133-160
        • Draid M.
        • Shiina T.
        • El-Mahmoudy A.
        • Boudaka A.
        • Shimizu Y.
        • Takewaki T.
        Neurally released ATP mediates endothelium-dependent hyperpolarization in the circular smooth muscle cells of chicken anterior mesenteric artery.
        Br. J. Pharmacol. 2005; 146: 983-989
        • Dun N.J.
        • Karczmar A.G.
        • Wu S.Y.
        • Shen E.
        Putative transmitter systems of mammalian sympathetic preganglionic neurons.
        Acta Neurobiol. Exp. 1993; 53: 53-63
        • Eccles J.C.
        The synapse: from electrical to chemical transmission.
        Annu. Rev. Neurosci. 1982; 5: 325-339
        • El-Badawi A.
        Neuromuscular mechanisms of micturition.
        in: Yalla S.V. McGuire E.J. El-Badawi A. Blaivas J.G. Neurology and Urodynamics. Principles and Practice. MacMillan Publishing Company, New York1988: 3-35
        • Eranko O.
        • Eranko L.
        Induction of SIF cells by hydrocortisone or human cord serum in sympathetic ganglia and their subsequent fate in vivo and in vitro.
        Adv. Biochem. Psychopharmacol. 1980; 25: 17-26
        • Falck B.
        • Torp A.
        New evidence for the localization of noradrenalin in the adrenergic nerve terminals.
        Med. Exp. Int. J. Exp. Med. 1962; 6: 169-172
        • Fang X.
        • Liu S.
        • Wang X.Y.
        • Gao N.
        • Hu H.Z.
        • Wang G.D.
        • Cook C.H.
        • Needleman B.J.
        • Mikami D.J.
        • Xia Y.
        • Fei G.J.
        • Hicks G.A.
        • Wood J.D.
        Neurogastroenterology of tegaserod (HTF 919) in the submucosal division of the guinea-pig and human enteric nervous system.
        Neurogastroenterology and Motility: The Official Journal of the European Gastrointestinal Motility Society. 2008; 20: 80-93
        • Fannon A.M.
        • Colman D.R.
        A model for central synaptic junctional complex formation based on the differential adhesive specificities of the cadherins.
        Neuron. 1996; 17: 423-434
        • Fejtova A.
        • Gundelfinger E.D.
        Molecular organization and assembly of the presynaptic active zone of neurotransmitter release.
        Results Probl. Cell Differ. 2006; 43: 49-68
        • Feng W.
        • Zhang M.
        Organization and dynamics of PDZ-domain-related supramodules in the postsynaptic density.
        Nat. Rev. Neurosci. 2009; 10: 87-99
        • Fernandes C.C.
        • Berg D.K.
        • Gomez-Varela D.
        Lateral mobility of nicotinic acetylcholine receptors on neurons is determined by receptor composition, local domain, and cell type.
        J. Neurosci. 2010; 30: 8841-8851
        • Foong J.P.
        • Bornstein J.C.
        mGluR(1) receptors contribute to non-purinergic slow excitatory transmission to submucosal VIP neurons of guinea-pig ileum.
        Front. Neurosci. 2009; 3: 46
        • Foong J.P.
        • Parry L.J.
        • Gwynne R.M.
        • Bornstein J.C.
        5-HT(1A), SST(1), and SST(2) receptors mediate inhibitory postsynaptic potentials in the submucous plexus of the guinea pig ileum.
        Am. J. Physiol. Gastrointest. Liver Physiol. 2010; 298: G384-G394
        • Frank R.A.
        Endogenous ion channel complexes: the NMDA receptor.
        Biochem. Soc. Trans. 2011; 39: 707-718
        • Fulop T.
        • Radabaugh S.
        • Smith C.
        Activity-dependent differential transmitter release in mouse adrenal chromaffin cells.
        J. Neurosci. 2005; 25: 7324-7332
        • Furness J.B.
        The Enteric Nervous System. Blackwell Publishing, 2006: 1-274
        • Furshpan E.J.
        • Potter D.D.
        Mechanism of nerve-impulse transmission at a crayfish synapse.
        Nature. 1957; 180: 342-343
        • Gabella G.
        Fine structure of the myenteric plexus in the guinea-pig ileum.
        J. Anat. 1972; 111: 69-97
        • Gabella G.
        Innervation of the gastrointestinal tract.
        Int. Rev. Cytol. 1979; 59: 129-193
        • Gabella G.
        The structural relations between nerve fibres and muscle cells in the urinary bladder of the rat.
        J. Neurocytol. 1995; 24: 159-187
        • Gallego D.
        • Gil V.
        • Martinez-Cutillas M.
        • Mane N.
        • Martin M.T.
        • Jimenez M.
        Purinergic neuromuscular transmission is absent in the colon of P2Y1 knocked out mice.
        J. Physiol. 2012; 590: 1943-1956
        • Galligan J.J.
        Ligand-gated ion channels in the enteric nervous system.
        Neurogastroenterol. Motil. 2002; 14: 611-623
        • Galligan J.J.
        Pharmacology of synaptic transmission in the enteric nervous system.
        Curr. Opin. Pharmacol. 2002; 2: 623-629
        • Galligan J.J.
        Cannabinoid signalling in the enteric nervous system.
        Neurogastroenterol. Motil. 2009; 21: 899-902
        • Galligan J.J.
        • Bertrand P.P.
        ATP mediates fast synaptic potentials in enteric neurons.
        J. Neurosci. 1994; 14: 7563-7571
        • Galligan J.J.
        • LePard K.J.
        • Schneider D.A.
        • Zhou X.
        Multiple mechanisms of fast excitatory synaptic transmission in the enteric nervous system.
        J. Auton. Nerv. Syst. 2000; 81: 97-103
        • Gershon M.D.
        • Ratcliffe E.M.
        Developmental biology of the enteric nervous system: pathogenesis of Hirschsprung's disease and other congenital dysmotilities.
        Semin. Pediatr. Surg. 2004; 13: 224-235
        • Geula C.
        • Darvesh S.
        Butyrylcholinesterase, cholinergic neurotransmission and the pathology of Alzheimer's disease.
        Drugs Today (Barc). 2004; 40: 711-721
        • Gibbins I.L.
        • Morris J.L.
        Structure of peripheral synapses: autonomic ganglia.
        Cell Tissue Res. 2006; 326: 205-220
        • Golding D.W.
        A pattern confirmed and refined—synaptic, nonsynaptic and parasynaptic exocytosis.
        Bioessays. 1994; 16: 503-508
        • Goyal R.K.
        Evidence for beta-nicotinamide adenine dinucleotide as a purinergic, inhibitory neurotransmitter in doubt.
        Gastroenterology. 2011; 141 (author reply e27-28): e27
        • Goyal R.K.
        • Rattan S.
        Nature of the vagal inhibitory innervation to the lower esophageal sphincter.
        J. Clin. Invest. 1975; 55: 1119-1126
        • Goyal R.K.
        • Sullivan M.P.
        • Chaudhury A.
        Progress in understanding of inhibitory purinergic neuromuscular transmission in the gut.
        Neurogastroenterol. Motil. 2013; 25: 203-207
        • Gray E.G.
        Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study.
        J. Anat. 1959; 93: 420-433
        • Gray E.G.
        Electron microscopy of presynaptic organelles of the spinal cord.
        J. Anat. 1963; 97: 101-106
        • Gray E.G.
        Problems of understanding the substructure of synapses.
        Prog. Brain Res. 1976; 45: 207-234
        • Grunditz T.
        • Hakanson R.
        • Sundler F.
        • Uddman R.
        Neuronal pathways to the rat thyroid revealed by retrograde tracing and immunocytochemistry.
        Neuroscience. 1988; 24: 321-335
        • Gwynne R.M.
        • Bornstein J.C.
        Synaptic transmission at functionally identified synapses in the enteric nervous system: roles for both ionotropic and metabotropic receptors.
        Curr. Neuropharmacol. 2007; 5: 1-17
        • Gwynne R.M.
        • Bornstein J.C.
        Electrical stimulation of the mucosa evokes slow EPSPs mediated by NK1 tachykinin receptors and by P2Y1 purinoceptors in different myenteric neurons.
        Am. J. Physiol. Gastrointest. Liver Physiol. 2009; 297: G179-G186
        • Gwynne R.M.
        • Ellis M.
        • Sjovall H.
        • Bornstein J.C.
        Cholera toxin induces sustained hyperexcitability in submucosal secretomotor neurons in guinea pig jejunum.
        Gastroenterology. 2009; 136: e294
        • Haenisch B.
        • Bonisch H.
        Depression and antidepressants: insights from knockout of dopamine, serotonin or noradrenaline re-uptake transporters.
        Pharmacol. Ther. 2011; 129: 352-368
        • Hammarlund M.
        • Watanabe S.
        • Schuske K.
        • Jorgensen E.M.
        CAPS and syntaxin dock dense core vesicles to the plasma membrane in neurons.
        J. Cell Biol. 2008; 180: 483-491
        • Hansen M.A.
        • Balcar V.J.
        • Barden J.A.
        • Bennett M.R.
        The distribution of single P2x1-receptor clusters on smooth muscle cells in relation to nerve varicosities in the rat urinary bladder.
        J. Neurocytol. 1998; 27: 529-539
        • Harata N.C.
        • Aravanis A.M.
        • Tsien R.W.
        Kiss-and-run and full-collapse fusion as modes of exo-endocytosis in neurosecretion.
        J. Neurochem. 2006; 97: 1546-1570
        • Hashitani H.
        • Bramich N.J.
        • Hirst G.D.
        Mechanisms of excitatory neuromuscular transmission in the guinea-pig urinary bladder.
        J. Physiol. 2000; 524: 565-579
        • Haucke V.
        • Neher E.
        • Sigrist S.J.
        Protein scaffolds in the coupling of synaptic exocytosis and endocytosis.
        Nat. Rev. Neurosci. 2011; 12: 127-138
        • Hayakawa T.
        • Kuwahara S.
        • Maeda S.
        • Tanaka K.
        • Seki M.
        Fine structural survey of tyrosine hydroxylase immunoreactive terminals in the myenteric ganglion of the rat duodenum.
        J. Chem. Neuroanat. 2008; 36: 191-196
        • He X.D.
        • Goyal R.K.
        Nitric oxide involvement in the peptide VIP-associated inhibitory junction potential in the guinea-pig ileum.
        J. Physiol. 1993; 461: 485-499
        • He X.D.
        • Goyal R.K.
        CaMKII inhibition hyperpolarizes membrane and blocks nitrergic IJP by closing a Cl- conductance in intestinal smooth muscle.
        Am. J. Physiol. Gastrointest. Liver Physiol. 2012; 303: G240-G246
        • Heuser J.E.
        • Reese T.S.
        Structure of the synapse.
        in: Brookhart J.M. Mountcastle V.B. Handbook of Physiology Section 1: The Nervous System. American Physiological Society, Bethesda1977: 261-294
        • Heuser J.E.
        • Reese T.S.
        Structural changes after transmitter release at the frog neuromuscular junction.
        J. Cell Biol. 1981; 88: 564-580
        • Hilfiker S.
        • Pieribone V.A.
        • Czernik A.J.
        • Kao H.T.
        • Augustine G.J.
        • Greengard P.
        Synapsins as regulators of neurotransmitter release.
        Philos. Trans. R. Soc. Lond. B Biol. Sci. 1999; 354: 269-279
        • Hirst G.D.
        • Edwards F.R.
        Electrical events underlying organized myogenic contractions of the guinea pig stomach.
        J. Physiol. 2006; 576: 659-665
        • Hirst G.D.
        • Bramich N.J.
        • Edwards F.R.
        • Klemm M.
        Transmission at autonomic neuroeffector junctions.
        Trends Neurosci. 1992; 15: 40-46
        • Hokfelt T.
        Looking at neurotransmitters in the microscope.
        Prog. Neurobiol. 2010; 90: 101-118
        • Holst M.C.
        • Kelly J.B.
        • Powley T.L.
        Vagal preganglionic projections to the enteric nervous system characterized with Phaseolus vulgaris-leucoagglutinin.
        J. Comp. Neurol. 1997; 381: 81-100
        • Horiguchi K.
        • Sanders K.M.
        • Ward S.M.
        Enteric motor neurons form synaptic-like junctions with interstitial cells of Cajal in the canine gastric antrum.
        Cell Tissue Res. 2003; 311: 299-313
        • Inoue R.
        • Chen S.
        Physiology of muscarinic receptor-operated nonselective cation channels in guinea-pig ileal smooth muscle.
        EXS. 1993; 66: 261-268
        • Jonakait G.M.
        • Gintzler A.R.
        • Gershon M.D.
        Isolation of axonal varicosities (autonomic synaptosomes) from the enteric nervous system.
        J. Neurochem. 1979; 32: 1387-1400
        • Kaminski A.
        • Kamper A.
        • Thaler K.
        • Chapman A.
        • Gartlehner G.
        Antidepressants for the treatment of abdominal pain-related functional gastrointestinal disorders in children and adolescents.
        Cochrane Database Syst. Rev. 2011; : CD008013
        • Kandel E.R.
        • Schwartz J.H.
        • Jessell T.M.
        Principles of Neural Science.
        4th ed. McGraw-Hill, 2000
        • Katz B.
        Neural transmitter release: from quantal secretion to exocytosis and beyond.
        J. Neurocytol. 2003; 32: 437-446
        • Kim E.
        • Sheng M.
        PDZ domain proteins of synapses.
        Nat. Rev. Neurosci. 2004; 5: 771-781
        • Kirchgessner A.L.
        • Liu M.T.
        Immunohistochemical localization of nicotinic acetylcholine receptors in the guinea pig bowel and pancreas.
        J. Comp. Neurol. 1998; 390: 497-514
        • Klemann C.J.
        • Roubos E.W.
        The gray area between synapse structure and function—Gray's synapse types I and II revisited.
        Synapse. 2011; 65: 1222-1230
        • Klemm M.F.
        Neuromuscular junctions made by nerve fibres supplying the longitudinal muscle of the guinea-pig ileum.
        J. Auton. Nerv. Syst. 1995; 55: 155-164
        • Kobayashi H.
        • Libet B.
        Generation of slow postsynaptic potentials without increases in ionic conductance.
        Proc. Natl. Acad. Sci. U. S. A. 1968; 60: 1304-1311
        • Kordon C.
        Neural mechanisms involved in pituitary control.
        Neurochem. Int. 1985; 7: 917-925
        • Krell R.D.
        • McCoy J.L.
        • Ridley P.T.
        Pharmacological characterization of the excitatory innervation to the guinea-pig urinary bladder in vitro: evidence for both cholinergic and non-adrenergic-non-cholinergic neurotransmission.
        Br. J. Pharmacol. 1981; 74: 15-22
        • Kurahashi M.
        • Zheng H.
        • Dwyer L.
        • Ward S.M.
        • Don Koh S.
        • Sanders K.M.
        A functional role for the ‘fibroblast-like cells’ in gastrointestinal smooth muscles.
        J. Physiol. 2011; 589: 697-710
        • Landis D.M.
        • Hall A.K.
        • Weinstein L.A.
        • Reese T.S.
        The organization of cytoplasm at the presynaptic active zone of a central nervous system synapse.
        Neuron. 1988; 1: 201-209
        • Lang T.
        • Jahn R.
        Core proteins of the secretory machinery.
        Handb. Exp. Pharmacol. 2008; 107–127
        • Langley J.
        The Autonomic Nervous System.
        W. Heffer & Sons, 1921
        • Lendvai B.
        • Vizi E.S.
        Nonsynaptic chemical transmission through nicotinic acetylcholine receptors.
        Physiol. Rev. 2008; 88: 333-349
        • Li Z.S.
        • Furness J.B.
        Inputs from intrinsic primary afferent neurons to nitric oxide synthase-immunoreactive neurons in the myenteric plexus of guinea pig ileum.
        Cell Tissue Res. 2000; 299 (Jan): 1-8
        • Llewellyn-Smith I.J.
        • Furness J.B.
        • O'Brien P.E.
        • Costa M.
        Noradrenergic nerves in human small intestine. Distribution and ultrastructure.
        Gastroenterology. 1984; 87: 513-529
        • Lomax A.E.
        • Sharkey K.A.
        • Bertrand P.P.
        • Low A.M.
        • Bornstein J.C.
        • Furness J.B.
        Correlation of morphology, electrophysiology and chemistry of neurons in the myenteric plexus of the guinea-pig distal colon.
        J. Auton. Nerv. Syst. 1999; 76: 45-61
        • Lopez-Munoz F.
        • Alamo C.
        Historical evolution of the neurotransmission concept.
        J. Neural Transm. 2009; 116: 515-533
        • Lovinger D.M.
        Presynaptic modulation by endocannabinoids.
        Handb. Exp. Pharmacol. 2008; 435–477
        • Luff S.E.
        Ultrastructure of sympathetic axons and their structural relationship with vascular smooth muscle.
        Anat. Embryol. (Berl). 1996; 193: 515-531
        • Luff S.E.
        • McLachlan E.M.
        • Hirst G.D.
        An ultrastructural analysis of the sympathetic neuromuscular junctions on arterioles of the submucosa of the guinea pig ileum.
        J. Comp. Neurol. 1987; 257: 578-594
        • Lundberg J.M.
        Pharmacology of cotransmission in the autonomic nervous system: integrative aspects on amines, neuropeptides, adenosine triphosphate, amino acids and nitric oxide.
        Pharmacol. Rev. 1996; 48: 113-178
        • Lysakowski A.
        • Figueras H.
        • Price S.D.
        • Peng Y.Y.
        Dense-cored vesicles, smooth endoplasmic reticulum, and mitochondria are closely associated with non-specialized parts of plasma membrane of nerve terminals: implications for exocytosis and calcium buffering by intraterminal organelles.
        J. Comp. Neurol. 1999; 403: 378-390
        • Madsen K.K.
        • White H.S.
        • Schousboe A.
        Neuronal and non-neuronal GABA transporters as targets for antiepileptic drugs.
        Pharmacol. Ther. 2010; 125: 394-401
        • Maggi C.A.
        • Giuliani S.
        • Zagorodnyuk V.
        Sequential activation of the triple excitatory transmission to the circular muscle of guinea-pig colon.
        Neuroscience. 1997; 79: 263-274
        • Mann P.T.
        • Southwell B.R.
        • Young H.M.
        • Furness J.B.
        Appositions made by axons of descending interneurons in the guinea-pig small intestine, investigated by confocal microscopy.
        J. Chem. Neuroanat. 1997; 12: 151-164
        • Marchi M.
        • Grilli M.
        Presynaptic nicotinic receptors modulating neurotransmitter release in the central nervous system: functional interactions with other coexisting receptors.
        Prog. Neurobiol. 2010; 92: 105-111
        • Mashimo H.
        • He X.D.
        • Huang P.L.
        • Fishman M.C.
        • Goyal R.K.
        Neuronal constitutive nitric oxide synthase is involved in murine enteric inhibitory neurotransmission.
        J. Clin. Invest. 1996; 98: 8-13
        • Mawe G.M.
        The role of cholecystokinin in ganglionic transmission in the guinea-pig gall-bladder.
        J. Physiol. 1991; 439: 89-102
        • Mitsui R.
        • Komuro T.
        Direct and indirect innervation of smooth muscle cells of rat stomach, with special reference to the interstitial cells of Cajal.
        Cell Tissue Res. 2002; 309: 219-227
        • Mochida S.
        • Libet B.
        Secondary late components of the muscarinic postsynaptic potentials, in rabbit superior cervical ganglion.
        J. Auton. Nerv. Syst. 1988; 24: 41-49
        • Monro R.L.
        • Bertrand P.P.
        • Bornstein J.C.
        ATP and 5-HT are the principal neurotransmitters in the descending excitatory reflex pathway of the guinea-pig ileum.
        Neurogastroenterol. Motil. 2002; 14: 255-264
        • Monro R.L.
        • Bertrand P.P.
        • Bornstein J.C.
        ATP participates in three excitatory postsynaptic potentials in the submucous plexus of the guinea pig ileum.
        J. Physiol. 2004; 556: 571-584
        • Morciano M.
        • Beckhaus T.
        • Karas M.
        • Zimmermann H.
        • Volknandt W.
        The proteome of the presynaptic active zone: from docked synaptic vesicles to adhesion molecules and maxi-channels.
        J. Neurochem. 2009; 108: 662-675
        • Muir T.C.
        • Wardle K.A.
        The electrical and mechanical basis of co-transmission in some vascular and non-vascular smooth muscles.
        J. Auton. Pharmacol. 1988; 8: 203-218
        • Murphy S.M.
        • Pilowsky P.M.
        • Llewellyn-Smith I.J.
        Vesicle shape and amino acids in synaptic inputs to phrenic motoneurons: do all inputs contain either glutamate or GABA?.
        J. Comp. Neurol. 1996; 373: 200-219
        • Nakazawa K.
        ATP-activated current and its interaction with acetylcholine-activated current in rat sympathetic neurons.
        J. Neurosci. 1994; 14: 740-750
        • Neal K.B.
        • Bornstein J.C.
        Serotonergic receptors in therapeutic approaches to gastrointestinal disorders.
        Curr. Opin. Pharmacol. 2006; 6: 547-552
        • Neff III, R.A.
        • Conroy W.G.
        • Schoellerman J.D.
        • Berg D.K.
        Synchronous and asynchronous transmitter release at nicotinic synapses are differentially regulated by postsynaptic PSD-95 proteins.
        J. Neurosci. 2009; 29: 15770-15779
        • Neher E.
        What is rate-limiting during sustained synaptic activity: vesicle supply or the availability of release sites.
        Front. Synaptic Neurosci. 2010; 2: 144
        • North R.A.
        • Surprenant A.
        Inhibitory synaptic potentials resulting from alpha 2-adrenoceptor activation in guinea-pig submucous plexus neurones.
        J. Physiol. 1985; 358: 17-33
        • North R.A.
        • Henderson G.
        • Katayama Y.
        • Johnson S.M.
        Electrophysiological evidence for presynaptic inhibition of acetylcholine release by 5-hydroxytryptamine in the enteric nervous system.
        Neuroscience. 1980; 5: 581-586
        • North R.A.
        • Slack B.E.
        • Surprenant A.
        Muscarinic M1 and M2 receptors mediate depolarization and presynaptic inhibition in guinea-pig enteric nervous system.
        J. Physiol. 1985; 368: 435-452
        • Nurgali K.
        • Stebbing M.J.
        • Furness J.B.
        Correlation of electrophysiological and morphological characteristics of enteric neurons in the mouse colon.
        J. Comp. Neurol. 2004; 468: 112-124
        • Okabe S.
        Molecular anatomy of the postsynaptic density.
        Mol. Cell. Neurosci. 2007; 34: 503-518
        • Olah S.
        • Fule M.
        • Komlosi G.
        • Varga C.
        • Baldi R.
        • Barzo P.
        • Tamas G.
        Regulation of cortical microcircuits by unitary GABA-mediated volume transmission.
        Nature. 2009; 461: 1278-1281
        • Owyang C.
        • Logsdon C.D.
        New insights into neurohormonal regulation of pancreatic secretion.
        Gastroenterology. 2004; 127: 957-969
        • Palay S.L.
        • Chan-Palay V.
        General morphology of neurons and neuroglia.
        in: Brookhart J.M. Mountcastle V.B. Handbook of Physiology Section 1: The Nervous System. American Physiological Society, Bethesda1977: 5-37
        • Palay S.L.
        • Palade G.E.
        The fine structure of neurons.
        J. Biophys. Biochem. Cytol. 1955; 1: 69-88
        • Parker M.J.
        • Zhao S.
        • Bredt D.S.
        • Sanes J.R.
        • Feng G.
        PSD93 regulates synaptic stability at neuronal cholinergic synapses.
        J. Neurosci. 2004; 24: 378-388
        • Parnas I.
        • Parnas H.
        Control of neurotransmitter release: from Ca2+ to voltage dependent G-protein coupled receptors.
        Pflugers Arch. 2010; 460: 975-990
        • Peters A.
        • Palay S.L.
        The morphology of synapses.
        J. Neurocytol. 1996; 25: 687-700
        • Pfenninger K.
        • Akert K.
        • Moor H.
        • Sandri C.
        The fine structure of freeze-fractured presynaptic membranes.
        J. Neurocytol. 1972; 1: 129-149
        • Phillips G.R.
        • Huang J.K.
        • Wang Y.
        • Tanaka H.
        • Shapiro L.
        • Zhang W.
        • Shan W.S.
        • Arndt K.
        • Frank M.
        • Gordon R.E.
        • Gawinowicz M.A.
        • Zhao Y.
        • Colman D.R.
        The presynaptic particle web: ultrastructure, composition, dissolution, and reconstitution.
        Neuron. 2001; 32: 63-77
        • Pompolo S.
        • Furness J.B.
        Sources of inputs to longitudinal muscle motor neurons and ascending interneurons in the guinea-pig small intestine.
        Cell Tissue Res. 1995; 280: 549-560
        • Pompolo S.
        • Furness J.B.
        Quantitative analysis of inputs to somatostatin-immunoreactive descending interneurons in the myenteric plexus of the guinea-pig small intestine.
        Cell Tissue Res. 1998; 294 (Nov): 219-226
        • Portbury A.L.
        • Pompolo S.
        • Furness J.B.
        • Stebbing M.J.
        • Kunze W.A.
        • Bornstein J.C.
        • Hughes S.
        Cholinergic, somatostatin-immunoreactive interneurons in the guinea pig intestine: morphology, ultrastructure, connections and projections.
        J. Anat. 1995; 187 (Oct): 303-321
        • Qu Z.D.
        • Thacker M.
        • Castelucci P.
        • Bagyanszki M.
        • Epstein M.L.
        • Furness J.B.
        Immunohistochemical analysis of neuron types in the mouse small intestine.
        Cell Tissue Res. 2008; 334: 147-161
        • Rao Y.M.
        • Chaudhury A.
        • Goyal R.K.
        Active and inactive pools of nNOS in the nerve terminals in mouse gut: implications for nitrergic neurotransmission.
        Am. J. Physiol. Gastrointest. Liver Physiol. 2008; 294: G627-G634
        • Ren J.
        • Bertrand P.P.
        Purinergic receptors and synaptic transmission in enteric neurons.
        Purinergic Signal. 2008; 4: 255-266
        • Richardson K.C.
        Electronmicroscopic observations on Auerbach's plexus in the rabbit, with special reference to the problem of smooth muscle innervation.
        Am. J. Anat. 1958; 103: 99-135
        • Richardson K.C.
        The fine structure of autonomic nerve endings in smooth muscle of the rat vas deferens.
        J. Anat. 1962; 96: 427-442
        • Richardson K.C.
        Electron microscopic identification of autonomic nerve endings.
        Nature. 1966; 210: 756
        • Rizzoli S.O.
        • Betz W.J.
        Synaptic vesicle pools.
        Nat. Rev. Neurosci. 2005; 6: 57-69
        • Rogers D.C.
        • Burnstock G.
        The interstitial cell and its place in the concept of the autonomic ground plexus.
        J. Comp. Neurol. 1966; 126: 255-284
        • Rumessen J.J.
        • Thuneberg L.
        • Mikkelsen H.B.
        Plexus muscularis profundus and associated interstitial cells. II. Ultrastructural studies of mouse small intestine.
        Anat. Rec. 1982; 203: 129-146
        • Salio C.
        • Lossi L.
        • Ferrini F.
        • Merighi A.
        Neuropeptides as synaptic transmitters.
        Cell Tissue Res. 2006; 326: 583-598
        • Samano C.
        • Zetina M.E.
        • Marin M.A.
        • Cifuentes F.
        • Morales M.A.
        Choline acetyl transferase and neuropeptide immunoreactivities are colocalized in somata, but preferentially localized in distinct axon fibers and boutons of cat sympathetic preganglionic neurons.
        Synapse. 2006; 60: 295-306
        • Sanders K.M.
        • Hwang S.J.
        • Ward S.M.
        Neuroeffector apparatus in gastrointestinal smooth muscle organs.
        J. Physiol. 2010; 588: 4621-4639
        • Sargent P.B.
        • Pang D.Z.
        Acetylcholine receptor-like molecules are found in both synaptic and extrasynaptic clusters on the surface of neurons in the frog cardiac ganglion.
        J. Neurosci. 1989; 9: 1062-1072
        • Sarter M.
        • Parikh V.
        • Howe W.M.
        Phasic acetylcholine release and the volume transmission hypothesis: time to move on.
        Nat. Rev. Neurosci. 2009; 10: 383-390
        • Sawada K.
        • Echigo N.
        • Juge N.
        • Miyaji T.
        • Otsuka M.
        • Omote H.
        • Yamamoto A.
        • Moriyama Y.
        Identification of a vesicular nucleotide transporter.
        Proc. Natl. Acad. Sci. U. S. A. 2008; 105: 5683-5686
        • Schikowski A.
        • Thewissen M.
        • Mathis C.
        • Ross H.G.
        • Enck P.
        Serotonin type-4 receptors modulate the sensitivity of intramural mechanoreceptive afferents of the cat rectum.
        Neurogastroenterol. Motil. 2002; 14: 221-227
        • Scimemi A.
        • Beato M.
        Determining the neurotransmitter concentration profile at active synapses.
        Mol. Neurobiol. 2009; 40: 289-306
        • Selmeczy Z.
        • Vizi E.S.
        • Csoka B.
        • Pacher P.
        • Hasko G.
        Role of nonsynaptic communication in regulating the immune response.
        Neurochem. Int. 2008; 52: 52-59
        • Shen K.Z.
        • Surprenant A.
        Common ionic mechanisms of excitation by substance P and other transmitters in guinea-pig submucosal neurones.
        J. Physiol. 1993; 462: 483-501
        • Siksou L.
        • Rostaing P.
        • Lechaire J.P.
        • Boudier T.
        • Ohtsuka T.
        • Fejtova A.
        • Kao H.T.
        • Greengard P.
        • Gundelfinger E.D.
        • Triller A.
        • Marty S.
        Three-dimensional architecture of presynaptic terminal cytomatrix.
        J. Neurosci. 2007; 27: 6868-6877
        • Skok V.I.
        Nicotinic acetylcholine receptors in autonomic ganglia.
        Auton. Neurosci. 2002; 97: 1-11
        • Smith K.R.
        • Kittler J.T.
        The cell biology of synaptic inhibition in health and disease.
        Curr. Opin. Neurobiol. 2010; 20: 550-556
        • Smolen A.J.
        Morphology of synapses in the autonomic nervous system.
        J. Electron. Microsc. Tech. 1988; 10: 187-204
        • Somlyo A.V.
        • Somlyo A.P.
        Electromechanical and pharmacomechanical coupling in vascular smooth muscle.
        J. Pharmacol. Exp. Ther. 1968; 159: 129-145
        • Song Z.M.
        • Brookes S.J.
        • Llewellyn-Smith I.J.
        • Costa M.
        Ultrastructural studies of the myenteric plexus and smooth muscle in organotypic cultures of the guinea-pig small intestine.
        Cell Tissue Res. 1995; 280: 627-637
        • Sorensen J.B.
        Conflicting views on the membrane fusion machinery and the fusion pore.
        Annu. Rev. Cell Dev. Biol. 2009; 25: 513-537
        • Steinert J.R.
        • Kopp-Scheinpflug C.
        • Baker C.
        • Challiss R.A.
        • Mistry R.
        • Haustein M.D.
        • Griffin S.J.
        • Tong H.
        • Graham B.P.
        • Forsythe I.D.
        Nitric oxide is a volume transmitter regulating postsynaptic excitability at a glutamatergic synapse.
        Neuron. 2008; 60: 642-656
        • Stevens D.R.
        • Schirra C.
        • Becherer U.
        • Rettig J.
        Vesicle pools: lessons from adrenal chromaffin cells.
        Front. Synaptic Neurosci. 2011; 3: 2
        • Stjarne L.
        • Astrand P.
        • Bao J.X.
        • Gonon F.
        • Msghina M.
        • Stjarne E.
        Spatiotemporal pattern of quantal release of ATP and noradrenaline from sympathetic nerves: consequences for neuromuscular transmission.
        Adv. Second Messenger Phosphoprotein Res. 1994; 29: 461-496
        • Sudhof T.
        Neurotransmitter release.
        in: Sudhof T.C. Starke K. Pharmacology of Neurotransmitter Release. Springer, Heidelberg2008: 1-22
        • Sykova E.
        • Nicholson C.
        Diffusion in brain extracellular space.
        Physiol. Rev. 2008; 88: 1277-1340
        • Takamori S.
        • Riedel D.
        • Jahn R.
        Immunoisolation of GABA-specific synaptic vesicles defines a functionally distinct subset of synaptic vesicles.
        J. Neurosci. 2000; 20: 4904-4911
        • Tanaka K.
        • Chiba T.
        Microvascular organization of sympathetic ganglia, with special reference to small intensely-fluorescent cells.
        Microsc. Res. Tech. 1996; 35: 137-145
        • Tang J.
        • Maximov A.
        • Shin O.H.
        • Dai H.
        • Rizo J.
        • Sudhof T.C.
        A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis.
        Cell. 2006; 126: 1175-1187
        • Tansey E.M.
        Not committing barbarisms: Sherrington and the synapse, 1897.
        Brain Res. Bull. 1997; 44: 211-212
        • Taxi J.
        The structure of Auerbach's plexus in the mouse studied with the electron microscope.
        C.R. Hebd. Seances Acad. Sci. 1958; 246: 1922-1925
        • Thaemert J.C.
        Ultrastructural interrelationships of nerve processes and smooth muscle cells in three dimensions.
        J. Cell Biol. 1966; 28: 37-49
        • Thatte H.S.
        • He X.D.
        • Goyal R.K.
        Imaging of nitric oxide in nitrergic neuromuscular neurotransmission in the gut.
        PLoS One. 2009; 4: e4990
        • Thureson-Klein A.
        • Klein R.L.
        • Zhu P.C.
        Exocytosis from large dense cored vesicles as a mechanism for neuropeptide release in the peripheral and central nervous system.
        Scan. Electron. Microsc. 1986; 179–187
        • Tonini M.
        • Galligan J.J.
        • North R.A.
        Effects of cisapride on cholinergic neurotransmission and propulsive motility in the guinea pig ileum.
        Gastroenterology. 1989; 96: 1257-1264
        • Tsuboi T.
        Molecular mechanism of attachment process of dense-core vesicles to the plasma membrane in neuroendocrine cells.
        Neurosci. Res. 2009; 63: 83-88
        • Van Geldre L.A.
        • Lefebvre R.A.
        Interaction of NO and VIP in gastrointestinal smooth muscle relaxation.
        Curr. Pharm. Des. 2004; 10: 2483-2497
        • Vanden Berghe P.
        • Klingauf J.
        Spatial organization and dynamic properties of neurotransmitter release sites in the enteric nervous system.
        Neuroscience. 2007; 145: 88-99
        • Verhage M.
        • Maia A.S.
        • Plomp J.J.
        • Brussaard A.B.
        • Heeroma J.H.
        • Vermeer H.
        • Toonen R.F.
        • Hammer R.E.
        • van den Berg T.K.
        • Missler M.
        • Geuze H.J.
        • Sudhof T.C.
        Synaptic assembly of the brain in the absence of neurotransmitter secretion.
        Science. 2000; 287: 864-869
        • Vigh B.
        • Manzano e Silva M.J.
        • Frank C.L.
        • Vincze C.
        • Czirok S.J.
        • Szabo A.
        • Lukats A.
        • Szel A.
        The system of cerebrospinal fluid-contacting neurons. Its supposed role in the nonsynaptic signal transmission of the brain.
        Histol. Histopathol. 2004; 19: 607-628
        • Vizi E.S.
        Physiological role of cytoplasmic and non-synaptic release of transmitter.
        Neurochem. Int. 1984; 6: 435-440
        • Vizi E.S.
        • Kiss J.P.
        • Lendvai B.
        Nonsynaptic communication in the central nervous system.
        Neurochem. Int. 2004; 45: 443-451
        • Vizi E.S.
        • Fekete A.
        • Karoly R.
        • Mike A.
        Non-synaptic receptors and transporters involved in brain functions and targets of drug treatment.
        Br. J. Pharmacol. 2010; 160: 785-809
        • Waites C.L.
        • Garner C.C.
        Presynaptic function in health and disease.
        Trends Neurosci. 2011; 34: 326-337
        • Westphal V.
        • Rizzoli S.O.
        • Lauterbach M.A.
        • Kamin D.
        • Jahn R.
        • Hell S.W.
        Video-rate far-field optical nanoscopy dissects synaptic vesicle movement.
        Science. 2008; 320: 246-249
        • Whittaker V.P.
        The isolation and characterization of acetylcholine-containing particles from brain.
        Biochem. J. 1959; 72: 694-706
        • Wood J.D.
        Cellular physiology of enteric neurons.
        in: Johnson L.R. Physiology of the Gastrointestinal Tract. 4th ed. Associate Press, Elsevier Science2006
        • Wood J.D.
        • Kirchgessner A.
        Slow excitatory metabotropic signal transmission in the enteric nervous system.
        Neurogastroenterol. Motil. 2004; 16: 71-80
        • Yamasaki M.
        • Matsui M.
        • Watanabe M.
        Preferential localization of muscarinic M1 receptor on dendritic shaft and spine of cortical pyramidal cells and its anatomical evidence for volume transmission.
        J. Neurosci. 2010; 30: 4408-4418
        • Young H.M.
        Ultrastructure of catecholamine-containing axons in the intestine of the domestic fowl.
        Cell Tissue Res. 1983; 234: 411-425
        • Young H.M.
        • Furness J.B.
        • Povey J.M.
        Analysis of connections between nitric oxide synthase neurons in the myenteric plexus of the guinea-pig small intestine.
        J. Neurocytol. 1995; 24: 257-263
        • Zamorano P.L.
        • Garner C.C.
        Unwebbing the presynaptic web.
        Neuron. 2001; 32: 3-6
        • Zhang Y.
        • Paterson W.G.
        Excitatory purinergic neurotransmission in smooth muscle of guinea-pig [corrected] taenia caeci.
        J. Physiol. 2005; 563: 855-865
        • Zhou X.
        • Ren J.
        • Brown E.
        • Schneider D.
        • Caraballo-Lopez Y.
        • Galligan J.J.
        Pharmacological properties of nicotinic acetylcholine receptors expressed by guinea pig small intestinal myenteric neurons.
        J. Pharmacol. Exp. Ther. 2002; 302: 889-897
        • Ziv N.E.
        • Garner C.C.
        Cellular and molecular mechanisms of presynaptic assembly.
        Nat. Rev. Neurosci. 2004; 5: 385-399
        • Zoli M.
        • Agnati L.F.
        Wiring and volume transmission in the central nervous system: the concept of closed and open synapses.
        Prog. Neurobiol. 1996; 49: 363-380
        • Zupanc G.K.
        Peptidergic transmission: from morphological correlates to functional implications.
        Micron. 1996; 27: 35-91