Short communication| Volume 176, ISSUE 1-2, P91-94, June 2013

Download started.


In vivo monitoring of acetylcholine release from cardiac vagal nerve endings in anesthetized mice


      We applied a microdialysis technique to the left ventricular myocardium of anesthetized mice and tried to monitor acetylcholine (ACh) release from cardiac vagal nerves. Transection of bilateral cervical vagal nerves decreased dialysate ACh concentration. Electrical stimulation of the left cervical vagal nerve increased dialysate ACh concentration in proportion to the frequency of stimulation. Intravenous administration of hexamethonium, prevented the increase in dialysate ACh concentration during vagal nerve stimulation, indicating that ACh in the dialysate primarily reflects ACh released from post-ganglionic cardiac vagal nerves. Microdialysis permits monitoring of ACh release from post-ganglionic cardiac vagal nerves that are most likely to be innervating the left ventricle in mice.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Autonomic Neuroscience: Basic and Clinical
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Akiyama T.
        • Yamazaki T.
        Effects of right and left vagal stimulation on left ventricular acetylcholine levels in the cat.
        Acta Physiol. Scand. 2001; 172: 11-16
        • Akiyama T.
        • Yamazaki T.
        • Ninomiya I.
        In vivo detection of endogenous acetylcholine release in cat ventricles.
        Am. J. Physiol. 1994; 266: H854-H860
        • Brack K.E.
        • Patel V.H.
        • Mantravardi R.
        • Coote J.H.
        • Ng G.A.
        Direct evidence of nitric oxide release from neuronal nitric oxide synthase activation in the left ventricle as a result of cervical vagus nerve stimulation.
        J. Physiol. 2009; 587: 3045-3054
        • Brown O.M.
        Cat heart acetylcholine: structural proof and distribution.
        Am. J. Physiol. 1976; 231: 781-785
        • Du C.K.
        • Morimoto S.
        • Nishii K.
        • Minakami R.
        • Ohta M.
        • Tadano N.
        • Lu Q.W.
        • Wang Y.Y.
        • Zhan D.Y.
        • Mochizuki M.
        • Kita S.
        • Miwa Y.
        • Takahashi-Yanaga F.
        • Iwamoto T.
        • Ohtsuki I.
        • Sasaguri T.
        Knock-in mouse model of dilated cardiomyopathy caused by troponin mutation.
        Circ. Res. 2007; 101: 185-194
        • Gassmann M.
        • Hennet T.
        From genetically altered mice to integrative physiology.
        News Physiol. Sci. 1998; 13: 53-57
        • Gehrmann J.
        • Hammer P.E.
        • Maguire C.T.
        • Wakimoto H.
        • Triedman J.K.
        • Berul C.I.
        Phenotypic screening for heart rate variability in the mouse.
        Am. J. Physiol. 2000; 279: H733-H740
        • James J.F.
        • Hewett T.E.
        • Robbins J.
        Cardiac physiology in transgenic mice.
        Circ. Res. 1998; 82: 407-415
        • Ling G.Y.
        • Cao W.H.
        • Onodera M.
        • Ju K.H.
        • Kurihara H.
        • Kurihara Y.
        • Yazaki Y.
        • Kumada M.
        • Fukuda Y.
        • Kuwaki T.
        Renal sympathetic nerve activity in mice: comparison between mice and rats and between normal and endothelin-1 deficient mice.
        Brain Res. 1998; 808: 238-249
        • Löffelholz K.
        • Pappano A.J.
        The parasympathetic neuroeffector junction of the heart.
        Pharmacol. Rev. 1985; 37: 1-24
        • Ma X.
        • Abboud F.M.
        • Chapleau M.W.
        Analysis of afferent, central, and efferent components of the baroreceptor reflex in mice.
        Am. J. Physiol. 2002; 283: R1033-R1040
        • Shimizu S.
        • Akiyama T.
        • Kawada T.
        • Shishido T.
        • Yamazaki T.
        • Kamiya A.
        • Mizuno M.
        • Sano S.
        • Sugimachi M.
        In vivo direct monitoring of vagal acetylcholine release to the sinoatrial node.
        Auton. Neurosci. 2009; 148: 44-49
        • Slavikova J.
        • Tueek S.
        Choline acetyltransferase in the heart of adult rats.
        Pflugers Arch. 1982; 392: 225-229
        • Thireau J.
        • Zhang B.L.
        • Poisson D.
        • Babuty D.
        Heart rate variability in mice: a theoretical and practical guide.
        Exp. Physiol. 2007; 93: 83-94
        • Ulphani J.S.
        • Cain J.H.
        • Inderyas F.
        • Gordon D.
        • Gikas P.V.
        • Shade G.
        • Mayor D.
        • Arora R.
        • Kadish A.H.
        • Goldberger J.J.
        Quantitative analysis of parasympathetic innervation of the porcine heart.
        Hear. Rhythm. 2010; 7: 1113-1119
        • Vyskoeil F.
        • Nikolsky E.
        • Edwards C.
        An analysis of the mechanisms underlying the non-quanta1 release of acetylcholine at the mouse neuromuscular junction.
        Neuroscience. 1983; 9: 429-435