Advertisement

Responses to hyperthermia. Optimizing heat dissipation by convection and evaporation: Neural control of skin blood flow and sweating in humans

  • Caroline J. Smith
    Correspondence
    Corresponding author at: 111 Rivers Street, Holmes Convocation Center 052, Department of Health and Exercise Science, Appalachian State University, Boone, NC 28608-2071, United States.
    Affiliations
    Department of Health and Exercise Science, Appalachian State University, Boone, NC 28608-2071, United States
    Search for articles by this author
  • John M. Johnson
    Affiliations
    Department of Physiology, University of Texas Health Science Center, San Antonio, TX 78229-3901, United States
    Search for articles by this author
Published:January 20, 2016DOI:https://doi.org/10.1016/j.autneu.2016.01.002

      Abstract

      Under normothermic, resting conditions, humans dissipate heat from the body at a rate approximately equal to heat production. Small discrepancies between heat production and heat elimination would, over time, lead to significant changes in heat storage and body temperature. When heat production or environmental temperature is high the challenge of maintaining heat balance is much greater. This matching of heat elimination with heat production is a function of the skin circulation facilitating heat transport to the body surface and sweating, enabling evaporative heat loss.
      These processes are manifestations of the autonomic control of cutaneous vasomotor and sudomotor functions and form the basis of this review. We focus on these systems in the responses to hyperthermia. In particular, the cutaneous vascular responses to heat stress and the current understanding of the neurovascular mechanisms involved. The available research regarding cutaneous active vasodilation and vasoconstriction is highlighted, with emphasis on active vasodilation as a major responder to heat stress. Involvement of the vasoconstrictor and active vasodilator controls of the skin circulation in the context of heat stress and nonthermoregulatory reflexes (blood pressure, exercise) are also considered. Autonomic involvement in the cutaneous vascular responses to direct heating and cooling of the skin are also discussed. We examine the autonomic control of sweating, including cholinergic and noncholinergic mechanisms, the local control of sweating, thermoregulatory and nonthermoregulatory reflex control and the possible relationship between sudomotor and cutaneous vasodilator function. Finally, we comment on the clinical relevance of these control schemes in conditions of autonomic dysfunction.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Autonomic Neuroscience: Basic and Clinical
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abularrage C.J.
        • Sidawy A.N.
        • Aidinian G.
        • Singh N.
        • Weiswasser J.M.
        • Arora S.
        Evaluation of the microcirculation in vascular disease.
        J. Vasc. Surg. 2005; 42: 574-581
        • Allen J.A.
        • Roddie I.C.
        The role of circulating catecholamines in sweat production in man.
        J. Physiol. 1972; 227: 801-814
        • Aoki T.
        • Narita T.
        • Sato H.
        • Izumi H.
        Failure to produce axon reflex sweating in the volar skin of Japanese monkey (Macaca Fuscata) and crab-eating monkey (Macaca Irus).
        Comparative Biochemistry and Physiology Part C: Comparative Pharmacology. 1984; 79: 325-329
        • Barcroft H.
        • Edholm O.G.
        The effect of temperature on blood flow and deep temperature in the human forearm.
        J. Physiol. Lond. 1943; 102: 5-20
        • Beiser G.D.
        • Zelis R.
        • Epstein S.E.
        • Mason D.T.
        • Braunwald E.
        The role of skin and muscle resistance vessels in reflexes mediated by the baroreceptor system.
        J. Clin. Invest. 1970; 49: 225-231
        • Bennett L.A.T.
        • Johnson J.M.
        • Stephens D.P.
        • Saad A.R.
        • Kellogg D.L.
        Evidence for a role for vasoactive intestinal peptide in active vasodilatation in the cutaneous vasculature of humans.
        J. Physiol. 2003; 552: 223-232
        • Benzinger T.H.
        On physcial heat regulation and the sense of temperature in man.
        Proc. Natl. Acad. Sci. U. S. A. 1959; 45: 645-659
        • Bini G.
        • Hagbarth K.E.
        • Hynninen P.
        • Wallin B.G.
        Thermoregulatory and rhythm-generating mechanisms governing the sudomotor and vasoconstrictor outflow in human cutaneous nerves.
        J. Physiol. 1980; 306: 537-552
        • Blair D.A.
        • Glover W.E.
        • Kidd B.S.L.
        • Roddie I.C.
        Peripheral vascular effects of bretylium tosylate in man.
        Brit. J. Pharm. Chemoth. 1960; 15: 466-475
        • Blumberg H.
        • Wallin B.G.
        Direct evidence of neurally mediated vasodilatation in hairy skin of the human foot.
        J. Physiol. 1987; 382: 105-121
        • Brengelmann G.L.
        • Johnson J.M.
        • Hermansen L.
        • Rowell L.B.
        Altered control of skin blood-flow during exercise at high internal temperatures.
        J. Appl. Physiol. 1977; 43: 790-794
        • Brengelmann G.L.
        • Freund P.R.
        • Rowell L.B.
        • Olerud J.E.
        • Kraning K.K.
        Absence of Active Cutaneous Vasodilation Associated with Congenital Absence of Sweat Glands in Humans.
        1981
        • Bruning R.S.
        • Santhanam L.
        • Stanhewicz A.E.
        • Smith C.J.
        • Berkowitz D.E.
        • Kenney W.L.
        • Holowatz L.A.
        Endothelial nitric oxide synthase mediates cutaneous vasodilation during local heating and is attenuated in middle-aged human skin.
        J. Appl. Physiol. (Bethesda, Md: 1985). 2012; 112: 2019-2026
        • Brunt V.E.
        • Minson C.T.
        KCa channels and epoxyeicosatrienoic acids: major contributors to thermal hyperaemia in human skin.
        J. Physiol. 2012; 590: 3523-3534
        • Bullard R.W.
        • Banerjee M.R.
        • Mac Intyre B.A.
        The role of the skin negative feedback regulation of eccrine sweating.
        Int. J. Biometeorol. 1967; 11: 93-104
        • Buono M.J.
        • Gonzalez G.
        • Guest S.
        • Hare A.
        • Numan T.
        • Tabor B.
        • White A.
        The role of in vivo β-adrenergic stimulation on sweat production during exercise.
        Auton. Neurosci.: Basic and Clinical. 2010; 155: 91-93
        • Carter S.J.
        • Hodges G.J.
        Sensory and sympathetic nerve contributions to the cutaneous vasodilator response from a noxious heat stimulus.
        Exp. Physiol. 2011; 96: 1208-1217
        • Charkoudian N.
        • Johnson J.M.
        Female reproductive hormones and thermoregulatory control of skin blood flow.
        Exerc. Sport Sci. Rev. 2000; 28: 108-112
        • Charkoudian N.
        • Eisenach J.H.
        • Atkinson J.L.D.
        • Fealey R.D.
        • Joyner M.J.
        Effects of chronic sympathectomy on locally mediated cutaneous vasodilation in humans.
        J. Appl. Physiol. 2002; 92: 685-690
        • Cotter J.D.
        • Patterson M.J.
        • Taylor N.A.S.
        The topography of eccrine sweating in humans during exercise.
        Eur. J. Appl. Physiol. 1995; 71: 549-554
        • Crandall C.G.
        • Johnson J.M.
        • Kosiba W.A.
        • Kellogg D.L.
        Baroreceptor control of the cutaneous active vasodilator system.
        J. Appl. Physiol. 1996; 81: 2192-2198
        • Crandall C.G.
        • Shibasaki M.
        • Yen T.C.
        Evidence that the human cutaneous venoarteriolar response is not mediated by adrenergic mechanisms.
        J. Physiol. 2002; 538: 599-605
        • Crossley R.J.
        • Greenfield A.D.
        • Plassaras G.C.
        • Stephens D.
        The interrelation of thermoregulatory and baroreceptor reflexes in the control of the blood vessels in the human forearm.
        J. Physiol. 1966; 183: 628-636
        • Dolly J.O.
        • Aoki K.R.
        The structure and mode of action of different botulinum toxins.
        Eur. J. Neurol. 2006; 13: 1-9
        • Donadio V.
        • Nolano M.
        • Provitera V.
        • Stancanelli A.
        • Lullo F.
        • Liguori R.
        • Santoro L.
        Skin sympathetic adrenergic innervation: an immunofluorescence confocal study.
        Ann. Neurol. 2006; 59: 376-381
        • Earley S.
        • Heppner T.J.
        • Nelson M.T.
        • Brayden J.E.
        TRPV4 forms a novel Ca2+ signaling complex with ryanodine receptors and BKCa channels.
        Circ. Res. 2005; 97: 1270-1279
        • Edholm O.G.
        • Fox R.H.
        • Macpherson R.K.
        Vasomotor control of the cutaneous blood vessels in the human forearm.
        J. Physiol. 1957; 139: 455-465
        • Eedy D.J.
        • Shaw C.
        • Armstrong E.P.
        • Johnston C.F.
        • Buchanan K.D.
        Vasoactive intestinal peptide (VIP) and peptide histidine methionine (PHM) in human eccrine sweat glands: demonstration of innervation, specific binding sites and presence in secretions.
        Br. J. Dermatol. 1990; 123: 65-76
        • Fagius J.
        • Wallin B.G.
        Sympathetic reflex latencies and conduction velocities in normal man.
        J. Neurol. Sci. 1980; 47: 433-448
        • Fagius J.
        • Wallin B.G.
        • Sundlof G.
        • Nerhed C.
        • Englesson S.
        Sympathetic outflow in man after anaesthesia of the glossopharyngeal and vagus nerves.
        Brain. 1985; 108: 423-438
        • Fortney S.M.
        • Wenger C.B.
        • Bove J.R.
        • Nadel E.R.
        Effect of hyperosmolality on control of blood flow and sweating.
        J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1984; 57: 1688-1695
        • Fox R.H.
        • Hilton S.M.
        Bradykinin formation in human skin as a factor in heat vasodilatation.
        J. Physiol. 1958; 142: 219-232
        • Freund B.J.
        • Joyner M.J.
        • Jilka S.M.
        • Kalis J.
        • Nittolo J.M.
        • Taylor J.A.
        • Peters H.
        • Feese G.
        • Wilmore J.H.
        Thermoregulation during prolonged exercise in heat: alterations with beta-adrenergic blockade.
        J. Appl. Physiol. 1987; 63: 930-936
        • Fujii N.
        • McGinn R.
        • Halili L.
        • Singh M.S.
        • Kondo N.
        • Kenny G.P.
        Cutaneous vascular and sweating responses to intradermal administration of ATP: a role for nitric oxide synthase and cyclooxygenase?.
        J. Physiol. 2015; 593: 2515-2525
        • Gaskell P.
        Are there sympathetic vasodilator nerves to the vessels of the hands?.
        J. Physiol. 1956; 131: 647-656
        • Gisolfi C.
        • Robinson S.
        Central and peripheral stimuli regulating sweating during intermittent work in men.
        J. Appl. Physiol. 1970; 29: 761-768
        • Gisolfi C.V.
        • Owen M.D.
        • Wall P.T.
        • Kregel K.C.
        Effects of changing hypothalamic temperature on eccrine sweating in the patas monkey.
        Brain Res. Bull. 1988; 20: 179-182
        • Go Y.-M.
        • Lee H.-R.
        • Park H.
        H(2)S inhibits oscillatory shear stress-induced monocyte binding to endothelial cells Via nitric oxide production.
        Mol. Cell. 2012; 34: 449-455
        • Grant R.T.
        • Holling H.E.
        Further observations on the vascular responses of the human limb to body warming, evidence for sympathetic vasodilator nerves in the normal subject.
        Clin. Sci. 1938; 3: 273-285
        • Grassi G.
        • Seravalle G.
        • Turri C.
        • Bertinieri G.
        • Dell'Oro R.
        • Mancia G.
        Impairment of thermoregulatory control of skin sympathetic nerve traffic in the elderly.
        Circulation. 2003; 108: 729-735
        • Haeusler G.
        • Haefely W.
        • Huerlimann A.
        On the mechanism of the adrenergic nerve blocking action of bretylium.
        Naunyn Schmiedeberg's Arch. Pharmacol. 1969; 265: 260-277
        • Havenith G.
        • Fogarty A.
        • Bartlett R.
        • Smith C.J.
        • Ventenat V.
        Male and female upper body sweat distribution during running measured with technical absorbents.
        Eur. J. Appl. Physiol. 2008; 104: 245-255
        • Heinzerian P.
        • Dey R.D.
        • Flux M.
        • Said S.I.
        Deficient vasoactive intestinal peptide innervation in the sweat glands of cystic-fibrosis patients.
        Science. 1985; 229: 1407-1408
        • Heinz-Erian P.
        • Paul S.
        • Said S.I.
        Receptors for vasoactive intestinal peptide on isolated human sweat glands.
        Peptides. 1986; 7: 151-154
        • Henriksen O.
        Local sympathetic reflex mechanism in regulation of blood-flow in human subcutaneous adipose-tissue.
        Acta Physiol. Scand. 1977; 7-48
        • Hertzman A.B.
        Individual differences in regional sweating.
        J. Appl. Physiol. 1957; 10: 242-248
        • Hodges G.J.
        • Sparks P.A.
        Contributions of endothelial nitric oxide synthase, noradrenaline, and neuropeptide Y to local warming-induced cutaneous vasodilatation in men.
        Microvasc. Res. 2013; 90: 128-134
        • Hodges G.J.
        • Sparks P.A.
        Noradrenaline and neuropeptide Y contribute to initial, but not sustained, vasodilatation in response to local skin warming in humans.
        Exp. Physiol. 2014; 99: 381-392
        • Hodges G.J.
        • Zhao K.
        • Kosiba W.A.
        • Johnson J.M.
        The involvement of nitric oxide in the cutaneous vasoconstrictor response to local cooling in humans.
        J. Physiol. Lond. 2006; 574: 849-857
        • Hodges G.J.
        • Kosiba W.A.
        • Zhao K.
        • Johnson J.M.
        The involvement of norepinephrine, neuropeptide Y, and nitric oxide in the cutaneous vasodilator response to local heating in humans.
        J. Appl. Physiol. 2008; 105: 233-240
        • Hodges G.J.
        • Kosiba W.A.
        • Zhao K.
        • Johnson J.M.
        The involvement of heating rate and vasoconstrictor nerves in the cutaneous vasodilator response to skin warming.
        Am. J. Physiol.-Heart C. 2009; 296: H51-H56
        • Holowatz L.A.
        • Thompson-Torgerson C.S.
        • Kenney W.L.
        The human cutaneous circulation as a model of generalized microvascular function.
        J. Appl. Physiol. 2008; 105: 370-372
        • Holzer P.
        Neurogenic vasodilatation and plasma leakage in the skin.
        Gen. Pharmacol. 1998; 30: 5-11
        • Houghton B.L.
        • Meendering J.R.
        • Wong B.J.
        • Minson C.T.
        Nitric oxide and noradrenaline contribute to the temperature threshold of the axon reflex response to gradual local heating in human skin.
        J. Physiol. Lond. 2006; 572: 811-820
        • Illigens B.W.
        • Gibbons C.
        Sweat testing to evaluate autonomic function.
        Clin. Auton. Res. 2009; 19: 79-87
        • Inoue Y.
        • Shibasaki M.
        Regional differences in age-related decrements of the cutaneous vascular and sweating responses to passive heating.
        Eur. J. Appl. Physiol. 1996; 74: 78-84
        • Issekutz Jr., B.
        • Hetenyi Jr., G.
        • Diosy A.
        Contributions to the physiology of sweat secretion.
        Arch. Int. Pharmacodyn. Ther. 1950; 83: 133-142
        • Joannides R.
        • Bellien J.
        • Thuillez C.
        Clinical methods for the evaluation of endothelial function — a focus on resistance arteries.
        Fundam. Clin. Pharmacol. 2006; 20: 311-320
        • Johnson J.M.
        Nonthermoregulatory Control of Human Skin Blood Flow.
        1986
        • Johnson J.M.
        • Kellogg Jr., D.L.
        Thermoregulatory and thermal control in the human cutaneous circulation.
        Front. Biol. 2010; 2: 825-853
        • Johnson J.M.
        • Park M.K.
        Effect of upright exercise on threshold for cutaneous vasodilation and sweating.
        J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1981; 50: 814-818
        • Johnson J.M.
        • Park M.K.
        Effect of heat stress on cutaneous vascular responses to the initiation of exercise.
        J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1982; 53: 744-749
        • Johnson J.M.
        • Pergola P.E.
        • Liao F.K.
        • Kellogg Jr., D.L.
        • Crandall C.G.
        Skin of the dorsal aspect of human hands and fingers possesses an active vasodilator system.
        J. Appl. Physiol. (Bethesda, Md: 1985). 1995; 78: 948-954
        • Johnson J.M.
        • Minson C.T.
        • Kellogg D.L.
        Cutaneous vasodilator and vasoconstrictor mechanisms in temperature regulation.
        Commun. Phys. 2014; 4: 33-89
        • Journeay W.S.
        • Reardon F.D.
        • Martin C.R.
        • Kenny G.P.
        Control of cutaneous vascular conductance and sweating during recovery from dynamic exercise in humans.
        J. Appl. Physiol. 2004; 96: 2207-2212
        • Journeay W.S.
        • Jay O.
        • McInnis N.H.
        • LeClair E.
        • Kenny G.P.
        Postexercise heat loss and hemodynamic responses during head-down tilt are similar between genders.
        Med. Sci. Sports Exerc. 2007; 39: 1308-1314
        • Kalsi K.K.
        • González-Alonso J.
        Temperature-dependent release of ATP from human erythrocytes: mechanism for the control of local tissue perfusion.
        Exp. Physiol. 2012; 97: 419-432
        • Kanosue K.
        • Yanasefujiwara M.
        • Hosono T.
        Hypothalamic network for thermoregulatory vasomotor control.
        Am. J. Phys. 1994; 267: R283-R288
        • Kellogg D.L.
        In Vivo Mechanisms of Cutaneous Vasodilation and Vasoconstriction in Humans During Thermoregulatory Challenges.
        2006
        • Kellogg Jr., D.L.
        • Johnson J.M.
        • Kosiba W.A.
        Selective abolition of adrenergic vasoconstrictor responses in skin by local iontophoresis of bretylium.
        Am. J. Phys. 1989; 257: H1599-H1606
        • Kellogg Jr., D.L.
        • Johnson J.M.
        • Kosiba W.A.
        Baroreflex control of the cutaneous active vasodilator system in humans.
        Circ. Res. 1990; 66: 1420-1426
        • Kellogg D.L.
        • Johnson J.M.
        • Kosiba W.A.
        Competition Between Cutaneous Active Vasoconstriction and Active Vasodilation During Exercise in Humans.
        1991
        • Kellogg D.L.
        • Johnson J.M.
        • Kosiba W.A.
        Control of internal temperature threshold for active cutaneous vasodilation by dynamic exercise.
        J. Appl. Physiol. 1991; 71: 2476-2482
        • Kellogg Jr., D.L.
        • Johnson J.M.
        • Kenney W.L.
        • Pergola P.E.
        • Kosiba W.A.
        Mechanisms of control of skin blood flow during prolonged exercise in humans.
        Am. J. Phys. 1993; 265: H562-H568
        • Kellogg D.L.
        • Pérgola P.E.
        • Piest K.L.
        • Kosiba W.A.
        • Crandall C.G.
        • Grossmann M.
        • Johnson J.M.
        Cutaneous active vasodilation in humans is mediated by cholinergic nerve cotransmission.
        Circ. Res. 1995; 77: 1222-1228
        • Kellogg D.L.
        • Crandall C.G.
        • Liu Y.
        • Charkoudian N.
        • Johnson J.M.
        Nitric oxide and cutaneous active vasodilation during heat stress in humans.
        J. Appl. Physiol. 1998; 85: 824-829
        • Kellogg D.L.
        • Liu Y.
        • Kosiba I.F.
        • O'Donnell D.
        Role of nitric oxide in the vascular effects of local warming of the skin in humans.
        J. Appl. Physiol. 1999; 86: 1185-1190
        • Kellogg D.L.
        • Liu Y.
        • McAllister K.
        • Friel C.
        • Pérgola P.E.
        Bradykinin does not mediate cutaneous active vasodilation during heat stress in humans.
        J. Appl. Physiol. 2002; 93: 1215-1221
        • Kellogg Jr., D.L.
        • Hodges G.J.
        • Orozco C.R.
        • Phillips T.M.
        • Zhao J.L.
        • Johnson J.M.
        Cholinergic mechanisms of cutaneous active vasodilation during heat stress in cystic fibrosis.
        J. Appl. Physiol. (Bethesda, Md: 1985). 2007; 103: 963-968
        • Kellogg D.L.
        • Zhao J.L.
        • Wu Y.
        Endothelial nitric oxide synthase control mechanisms in the cutaneous vasculature of humans in vivo.
        Am. J. Physiol.-Heart C. 2008; 295: H123-H129
        • Kellogg D.L.
        • Zhao J.L.
        • Wu Y.
        Neuronal nitric oxide synthase control mechanisms in the cutaneous vasculature of humans in vivo.
        J. Physiol. Lond. 2008; 586: 847-857
        • Kellogg D.L.
        • Zhao J.L.
        • Wu Y.B.
        Roles of nitric oxide synthase isoforms in cutaneous vasodilation induced by local warming of the skin and whole body heat stress in humans.
        J. Appl. Physiol. 2009; 107: 1438-1444
        • Kellogg D.L.
        • Zhao J.L.
        • Wu Y.B.
        • Johnson J.M.
        VIP/PACAP receptor mediation of cutaneous active vasodilation during heat stress in humans.
        J. Appl. Physiol. 2010; 109: 95-100
        • Kellogg D.L.
        • Zhao J.L.
        • Wu Y.B.
        • Johnson J.M.
        Nitric oxide and receptors for VIP and PACAP in cutaneous active vasodilation during heat stress in humans.
        J. Appl. Physiol. 2012; 113: 1512-1518
        • Kennedy W.R.
        • Wendelschafer-Crabb G.
        • Brelje T.C.
        Innervation and vasculature of human sweat glands: an immunohistochemistry-laser scanning confocal fluorescence microscopy study.
        The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 1994; 14: 6825-6833
        • Kenney W.L.
        • Johnson J.M.
        Control of skin blood-flow during exercise.
        Med. Sci. Sports Exerc. 1992; 24: 303-312
        • Kenney W.L.
        • Tankersley C.G.
        • Newswanger D.L.
        • Puhl S.M.
        Alpha 1-adrenergic Blockade Does not Alter Control of Skin Blood Flow During Exercise.
        1991
        • Kenney W.L.
        • Zappe D.H.
        • Tankersley C.G.
        • Derr J.A.
        Effect of systemic yohimbine on the control of skin blood-flow during local heating and dynamic exercise.
        Am. J. Phys. 1994; 266: H371-H376
        • Kenney W.L.
        • Craighead D.H.
        • Alexander L.M.
        Heat waves, aging, and human cardiovascular health.
        Med. Sci. Sports Exerc. 2014; 46: 1891-1899
        • Kenny G.P.
        • Gagnon D.
        • Shiff D.
        • Armstrong R.
        • Journeay W.S.
        • Kilby D.
        Influence of nonthermal baroreceptor modulation of heat loss responses during uncompensable heat stress.
        Eur. J. Appl. Physiol. 2010; 108: 541-548
        • Kondo N.
        • Horikawa N.
        • Aoki K.
        • Shibasaki M.
        • Inoue Y.
        • Nishiyasu T.
        • Crandall C.G.
        Sweating responses to a sustained static exercise is dependent on thermal load in humans.
        Acta Physiol. Scand. 2002; 175: 289-295
      1. Koroxeni. G, Marshall RJ and Shepherd JT. Cardiovascular response to acute heat stress. J. Appl. Physiol.. 1961;16:869-&.

        • Kummer W.
        • Herbst W.M.
        • Heym C.
        Vasoactive intestinal polypeptide receptor-like immunoreactivity in human sweat glands.
        Neurosci. Lett. 1990; 110: 239-243
        • Kuno Y.
        Human Perspiration.
        CC Thomas, Springfield, Illinois1956
        • Kutz J.L.
        • Greaney J.L.
        • Santhanam L.
        • Alexander L.M.
        Evidence for a functional vasodilatatory role for hydrogen sulphide in the human cutaneous microvasculature.
        J. Physiol. Lond. 2015; 593: 2121-2129
        • Lee K.
        • Mack G.W.
        Role of nitric oxide in methacholine-induced sweating and vasodilation in human skin.
        J. Appl. Physiol. 2006; 100: 1355-1360
        • Lewis T.
        • Pickering G.
        Vasodilation in the limbs in response to warming the body; with evidence for sympathetic vasodilator nerves in man.
        Heart. 1931; 16: 33-51
        • Li L.
        • Liu D.
        • Bu D.
        • Chen S.
        • Wu J.
        • Tang C.
        • Du J.
        • Jin H.
        Brg1-dependent epigenetic control of vascular smooth muscle cell proliferation by hydrogen sulfide.
        Biochimica et Biophysica Acta (BBA) — Molecular Cell Research. 1833; 2013: 1347-1355
        • Lind A.R.
        • Leithead C.S.
        • McNicol G.W.
        Cardiovascular changes during syncope induced by tilting men in the heat.
        J. Appl. Physiol. 1968; 25: 268-276
        • Lindh B.
        • Hokfelt T.
        Structural and functional aspects of acetylcholine peptide coexistence in the autonomic nervous system.
        Prog. Brain Res. 1990; 84: 175-191
        • Lindsay S.L.
        • Elder H.Y.
        • Tavadia S.
        • Bovell D.L.
        Immunolocalisation of the P2Y(1), P2Y(2) and P2Y(4) receptor subtypes in human eccrine sweat glands.
        J. Physiol. Lond. 2002; 543: 92p-93p
        • Lindsay S.L.
        • Holdsworth R.
        • Tavadia S.
        • Bovell D.L.
        Immunolocalisation of P2Y(2) receptor subtype in human hyperhidrotic eccrine sweat glands.
        Brit. J. Pharmacol. 2002; 137
        • Lloyd D.P.
        Temperature and the action of sweat glands.
        Proc. Natl. Acad. Sci. U. S. A. 1961; 47: 358-362
        • Longmore J.
        • Jani B.
        • Bradshaw C.M.
        • Szabadi E.
        Effects of locally administered anticholinesterase agents on the secretory response of human eccrine sweat glands to acetylcholine and carbachol.
        Br. J. Clin. Pharmacol. 1986; 21: 131-135
        • Low V.A.
        • Sandroni P.
        • Fealey R.D.
        • Low P.A.
        Detection of small-fiber neuropathy by sudomotor testing.
        Muscle Nerve. 2006; 34: 57-61
        • Lundberg J.M.
        Pharmacology of cotransmission in the autonomic nervous system: integrative aspects on amines, neuropeptides, adenosine triphosphate, amino acids and nitric oxide.
        Pharmacol. Rev. 1996; 48: 113-178
        • Lundberg J.M.
        • Änggärd A.
        • Fahrenkrug J.
        • Hökfelt T.
        • Mutt V.
        Vasoactive intestinal polypeptide in cholinergic neurons of exocrine glands: functional significance of coexisting transmitters for vasodilation and secretion.
        Proc. Natl. Acad. Sci. U. S. A. 1980; 77: 1651-1655
        • Lundberg J.
        • Norgren L.
        • Ribbe E.
        • Rosen I.
        • Steen S.
        • Thorne J.
        • Wallin B.G.
        Direct evidence of active sympathetic vasodilatation in the skin of the human foot.
        J. Physiol. Lond. 1989; 417: 437-446
        • Machado-Moreira C.
        • Smith F.
        • van den Heuvel A.J.
        • Mekjavic I.
        • Taylor N.S.
        Sweat secretion from the torso during passively-induced and exercise-related hyperthermia.
        Eur. J. Appl. Physiol. 2008; 104: 265-270
        • Machado-Moreira C.
        • Wilmink F.
        • Meijer A.
        • Mekjavic I.
        • Taylor N.S.
        Local differences in sweat secretion from the head during rest and exercise in the heat.
        Eur. J. Appl. Physiol. 2008; 104: 257-264
        • Machado-Moreira C.A.
        • Caldwell J.N.
        • Mekjavic I.B.
        • Taylor N.A.S.
        Sweat secretion from palmar and dorsal surfaces of the hands during passive and active heating.
        Aviat. Space Environ. Med. 2008; 79: 1034-1040
        • Machado-Moreira C.A.
        • McLennan P.L.
        • Lillioja S.
        • van Dijk W.
        • Caldwell J.N.
        • Taylor N.A.S.
        The cholinergic blockade of both thermally and non-thermally induced human eccrine sweating.
        Exp. Physiol. 2012; 97: 930-942
        • MacIntyre B.A.
        • Bullard R.W.
        • Banerjee M.
        • Elizondo R.
        Mechanism of Enhancement of Eccrine Sweating by Localized Heating.
        1968
        • Mack G.W.
        • Shannon L.M.
        • Nadel E.R.
        Influence of beta-adrenergic blockade on the control of sweating in humans.
        J. Appl. Physiol. 1986; 61: 1701-1705
        • Magerl W.
        • Treede R.D.
        Heat-evoked vasodilatation in human hairy skin: axon reflexes due to low-level activity of nociceptive afferents.
        J. Physiol. Lond. 1996; 497: 837-848
        • McCord G.R.
        • Cracowski J.L.
        • Minson C.T.
        Prostanoids contribute to cutaneous active vasodilation in humans.
        Am J Physiol-Reg I. 2006; 291: R596-R602
        • McInnis N.H.
        • Journeay W.S.
        • Jay O.
        • Leclair E.
        • Kenny G.P.
        15 degrees head-down tilt attenuates the postexercise reduction in cutaneous vascular conductance and sweating and decreases esophageal temperature recovery time.
        J. Appl. Physiol. 2006; 101: 840-847
        • McNamara T.C.
        • Keen J.T.
        • Simmons G.H.
        • Alexander L.M.
        • Wong B.J.
        Endothelial nitric oxide synthase mediates the nitric oxide component of reflex cutaneous vasodilatation during dynamic exercise in humans.
        J. Physiol. Lond. 2014; 592: 5317-5326
        • Milner R.
        • Bodin R.
        • Guiducci S.
        • Del Rosso A.
        • Kahaleh M.B.
        • Matucci-Cerinic M.
        • Burnstock G.
        Regulation of substance P mRNA expression in human dermal microvascular endothelial cells.
        Clin. Exp. Rheumatol. 2004; 22: S24-S27
        • Minson C.T.
        • Wladkowski S.L.
        • Cardell A.F.
        • Pawelczyk J.A.
        • Kenney W.L.
        Age alters the cardiovascular response to direct passive heating.
        J. Appl. Physiol. 1998; 84: 1323-1332
        • Minson C.T.
        • Berry L.T.
        • Joyner M.J.
        Nitric oxide and neurally mediated regulation of skin blood flow during local heating.
        J. Appl. Physiol. 2001; 91: 1619-1626
        • Montain S.J.
        • Latzka W.A.
        • Sawka M.N.
        Control of thermoregulatory sweating is altered by hydration level and exercise intensity.
        J. of Appl. Physiol. (Bethesda, Md: 1985). 1995; 79: 1434-1439
        • Moorhouse V.H.K.
        Effect of increased temperature of the carotid blood.
        Am. J. Phys. 1911; 28: 223-234
        • Mora-Rodriguez R.
        • Gonzalez-Alonso J.
        • Below P.R.
        • Coyle E.F.
        Plasma catecholamines and hyperglycaemia influence thermoregulation in man during prolonged exercise in the heat.
        J. Physiol. 1996; 491: 529-540
        • Nadel E.R.
        • Bullard R.W.
        • Stolwijk J.A.
        Importance of skin temperature in the regulation of sweating.
        J. Appl. Physiol. 1971; 31: 80-87
        • Namer B.
        • Bickel A.
        • Kramer H.
        • Birklein F.
        • Schmelz M.
        Chemically and electrically induced sweating and flare reaction.
        Auton. Neurosci.-Basic. 2004; 114: 72-82
      2. Ogawa T. Local effect of skin temperature on threshold concentration of sudorific agents. J. Appl. Physiol.. 1970;28:18-&.

        • Ogawa T.
        • Asayama M.
        Quantitative-analysis of the local effect of skin temperature on sweating.
        Jpn. J. Physiol. 1986; 36: 417-422
        • Ogawa T.
        • Bullard R.W.
        Characteristics of subthreshold sudomotor neural impulses.
        J. Appl. Physiol. 1972; 33: 300-305
        • Ogawa T.
        • Sugenoya J.
        Pulsatile sweating and sympathetic sudomotor activity.
        Jpn. J. Physiol. 1993; 43: 275-289
        • Ott I.
        The heat-center in the brain.
        J. Nerv. Ment. Dis. 1887; 14: 152-162
        • Pearson J.
        • Low D.A.
        • Stöhr E.
        • Kalsi K.
        • Ali L.
        • Barker H.
        • González-Alonso J.
        Hemodynamic responses to heat stress in the resting and exercising human leg: insight into the effect of temperature on skeletal muscle blood flow.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011; 300: R663-R673
        • Pescatello L.S.
        • Mack G.W.
        • Leach C.N.
        • Nadel E.R.
        Effect of beta-adrenergic blockade on thermoregulation during exercise.
        J. Appl. Physiol. 1987; 62: 1448-1452
        • Pescatello L.S.
        • Mack G.W.
        • Leach C.N.
        • Nadel E.R.
        Thermoregulation in mildly hypertensive men during beta-adrenergic-blockade.
        Med. Sci. Sports Exerc. 1990; 22: 222-228
        • Rabasseda X.
        • Solsona C.
        • Marsal J.
        • Egea G.
        • Bizzini B.
        ATP release from pure cholinergic synaptosomes is not blocked by tetanus toxin.
        FEBS Lett. 1987; 213: 337-340
        • Roddie I.
        Circulation to skin and adipose tissue.
        in: Shepherd J. Abboud F. Handbook of Physiology: The Cardiovascular System. Am. Physiol. Soc, Bethesda, MD1983
        • Roddie I.C.
        • Shepherd J.T.
        • Whelan R.F.
        The contribution of constrictor and dilator nerves to the skin vasodilation during body heating.
        J. Physiol. Lond. 1957; 136: 489-497
        • Rowell L.B.
        Human cardiovascular adjustments to exercise and thermal-stress.
        Physiol. Rev. 1974; 54: 75-159
        • Rowell L.B.
        • Wyss C.R.
        • Gl B.
        Sustained human skin and muscle vasoconstriction with reduced baroreceptor activity.
        J. Appl. Physiol. 1973; 34: 639-643
        • Saad A.R.
        • Stephens D.P.
        • Bennett L.A.T.
        • Charkoudian N.
        • Kosiba W.A.
        • Johnson J.M.
        Influence of isometric exercise on blood flow and sweating in glabrous and nonglabrous human skin.
        J. Appl. Physiol. 2001; 91: 2487-2492
        • Saito M.
        • Naito M.
        • Mano T.
        Different responses in skin and muscle sympathetic-nerve activity to static muscle-contraction.
        J. Appl. Physiol. 1990; 69: 2085-2090
      3. K Sato. On the mechanism of sweat secretion from the foot of the cat J Orient Med. 11:99, 1929 (Japanese) cited by Kuno, Y. IN: Human Perspiration 1956: CC Thomas; Springfield, Illinois

        • Sato K.
        • Sato F.
        Pharmacologic Responsiveness of Isolated Single Eccrine Sweat Glands.
        1981
        • Saumet J.L.
        • Kellogg D.L.
        • Taylor W.F.
        • Johnson J.M.
        Cutaneous laser-Doppler flowmetry — influence of underlying muscle blood-flow.
        J. Appl. Physiol. 1988; 65: 478-481
        • Savage M.V.
        • Brengelmann G.L.
        Control of skin blood flow in the neutral zone of human body temperature regulation.
        J. Appl. Physiol. 1996; 80: 1249-1257
        • Savage M.V.
        • Brengelmann G.L.
        • Buchan A.M.J.
        • Freund P.R.
        Cystic-fibrosis, vasoactive intestinal polypeptide, and active cutaneous vasodilation.
        J. Appl. Physiol. 1990; 69: 2149-2154
        • Sawka M.N.
        • Young A.J.
        • Francesconi R.P.
        • Muza S.R.
        • Pandolf K.B.
        Thermoregulatory and Blood Responses During Exercise at Graded Hypohydration Levels.
        1985
        • Schlader Z.J.
        • Gagnon D.
        • Lucas R.A.I.
        • Pearson J.
        • Crandall C.G.
        Baroreceptor Unloading Does not Limit Forearm Sweat Rate During Severe Passive Heat Stress.
        2015
        • Schlereth T.
        • Dittmar J.O.
        • Seewald B.
        • Birklein F.
        Peripheral amplification of sweating — a role for calcitonin gene-related peptide.
        J. Physiol. 2006; 576: 823-832
        • Shastry S.
        • Dietz N.M.
        • Halliwill J.R.
        • Reed A.S.
        • Joyner M.J.
        Effects of nitric oxide synthase inhibition on cutaneous vasodilation during body heating in humans.
        J. Appl. Physiol. 1998; 85: 830-834
        • Shastry S.
        • Minson C.T.
        • Wilson S.A.
        • Dietz N.M.
        • Joyner M.J.
        Effects of atropine and L-NAME on cutaneous blood flow during body heating in humans.
        J. Appl. Physiol. 2000; 88: 467-472
        • Shibasaki M.
        • Crandall C.G.
        Effect of Local Acetylcholinesterase Inhibition on Sweat Rate in Humans.
        2001
        • Shibasaki M.
        • Davis S.L.
        • Cui J.
        • Low D.A.
        • Keller D.M.
        • Durand S.
        • Crandall C.G.
        Neurally mediated vasoconstriction is capable of decreasing skin blood flow during orthostasis in the heat-stressed human.
        J. Physiol. Lond. 2006; 575: 953-959
        • Shimizu Y.
        • Sakai M.
        • Umemura Y.
        • Ueda H.
        Immunohistochemical localization of nitric oxide synthase in normal human skin: expression of endothelial-type and inducible-type nitric oxide synthase in keratinocytes.
        J. Dermatol. 1997; 24: 80-87
        • Simpson L.L.
        The origin, structure, and pharmacological activity of botulinum toxin.
        Pharmacol. Rev. 1981; 33: 155-188
        • Smith C.
        • Havenith G.
        Body mapping of sweating patterns in male athletes in mild exercise-induced hyperthermia.
        Eur. J. Appl. Physiol. 2011; 111: 1391-1404
        • Smith C.J.
        • Havenith G.
        Body mapping of sweating patterns in athletes: a sex comparison.
        Med. Sci. Sports Exerc. 2012; 44: 2350-2361
        • Smith C.J.
        • Santhanam L.
        • Bruning R.S.
        • Stanhewicz A.
        • Berkowitz D.E.
        • Holowatz L.A.
        Upregulation of inducible nitric oxide synthase contributes to attenuated cutaneous vasodilation in essential hypertensive humans.
        Hypertension. 2011; 58: 935-942
        • Smith C.J.
        • Alexander L.M.
        • Kenney W.L.
        Nonuniform, age-related decrements in regional sweating and skin blood flow.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013; 305: R877-R885
        • Smith C.J.
        • Kenney W.L.
        • Alexander L.M.
        Regional relation between skin blood flow and sweating to passive heating and local administration of acetylcholine in young, healthy humans.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013; 304: R566-R573
        • Stapleton J.M.
        • Fujii N.
        • Carter M.
        • Kenny G.P.
        Diminished nitric oxide-dependent sweating in older males during intermittent exercise in the heat.
        Exp. Physiol. 2014; 99: 921-932
        • Stephens D.P.
        • Charkoudian N.
        • Benevento J.M.
        • Johnson J.M.
        • Saumet J.L.
        The influence of topical capsaicin on the local thermal control of skin blood flow in humans.
        Am. J. Physiol.-Reg. I. 2001; 281: R894-R901
        • Sugenoya J.
        • Iwase S.
        • Mano T.
        • Sugiyama Y.
        • Ogawa T.
        • Nishiyama T.
        • Nishimura N.
        • Kimura T.
        Vasodilator component in sympathetic nerve activity destined for the skin of the dorsal foot of mildly heated humans.
        J. Physiol. 1998; 507: 603-610
        • Tainio H.
        • Vaalasti A.
        • Rechardt L.
        The distribution of substance P-, CGRP-, galanin- and ANP-like immunoreactive nerves in human sweat glands.
        Histochem. J. 1987; 19: 375-380
        • Taylor W.F.
        • Johnson J.M.
        • Oleary D.
        • Park M.K.
        Effect of high local temperature on reflex cutaneous vasodilation.
        J. Appl. Physiol. 1984; 57: 191-196
        • Taylor W.F.
        • Johnson J.M.
        • Kosiba W.A.
        • Kwan C.M.
        Graded cutaneous vascular-responses to dynamic leg exercise.
        J. Appl. Physiol. 1988; 64: 1803-1809
        • Taylor W.F.
        • Johnson J.M.
        • Kosiba W.A.
        • Kwan C.M.
        Cutaneous vascular-responses to isometric handgrip exercise.
        J. Appl. Physiol. 1989; 66: 1586-1592
        • Taylor N.A.S.
        • Caldwell F.N.
        • Mekjavic I.B.
        The sweating foot: local differences in sweat secretion during exercise-induced hyperthermia.
        Aviat. Space Envir. Md. 2006; 77: 1020-1027
        • Tew G.A.
        • Klonizakis M.
        • Moss J.
        • Ruddock A.D.
        • Saxton J.M.
        • Hodges G.J.
        Role of sensory nerves in the rapid cutaneous vasodilator response to local heating in young and older endurance-trained and untrained men.
        Exp. Physiol. 2011; 96: 163-170
        • Tew G.A.
        • Saxton J.M.
        • Klonizakis M.
        • Moss J.
        • Ruddock A.D.
        • Hodges G.J.
        Aging and aerobic fitness affect the contribution of noradrenergic sympathetic nerves to the rapid cutaneous vasodilator response to local heating.
        J. Appl. Physiol. 2011; 110: 1264-1270
        • Uno H.
        Sympathetic innervation of sweat glands and piloarrector muscles of macaques and human beings.
        J. Investig. Dermatol. 1977; 69: 112-120
        • Vaalasti A.
        • Tainio H.
        • Rechardt L.
        Vasoactive intestinal polypeptide (VIP)-like immunoreactivity in the nerves of human axillary sweat glands.
        J. Investig. Dermatol. 1985; 85: 246-248
        • van Beaumont W.
        • Bullard R.W.
        Sweating exercise stimulation during circulatory arrest.
        Science. 1966; 152: 1521-1523
      4. Vanbeaumont W and Bullard RW. Sweating — its rapid response to muscular work. Science. 1963;141:643-&.

        • Vissing S.F.
        • Hjortso E.M.
        Central motor command activates sympathetic outflow to the cutaneous circulation in humans.
        J. Physiol. Lond. 1996; 492: 931-939
        • Vissing S.F.
        • Scherrer U.
        • Victor R.G.
        Increase of sympathetic discharge to skeletal muscle but not to skin during mild lower body negative pressure in humans.
        J. Physiol. 1994; 481: 233-241
        • Vissing S.F.
        • Secher N.H.
        • Victor R.G.
        Mechanisms of cutaneous vasoconstriction during upright posture.
        Acta Physiol. Scand. 1997; 159: 131-138
        • Wallin B.G.
        Neural control of human skin blood-flow.
        J. Auton. Nerv. Syst. 1990; 30: S185-S190
        • Wallin B.G.
        • Sundlof G.
        • Delius W.
        The effect of carotid sinus nerve stimulation on muscle and skin nerve sympathetic activity in man.
        Pflugers Arch. - Eur. J. Physiol. 1975; 358: 101-110
        • Welch G.
        • Foote K.M.
        • Hansen C.
        • Mack G.W.
        Nonselective NOS inhibition blunts the sweat response to exercise in a warm environment.
        J. Appl. Physiol. 2009; 106: 796-803
        • Welch G.
        • Foote K.M.
        • Hansen C.
        • GW M.
        Nonselective NOS inhibition blunts the sweat response to exercise in a warm environment.
        J. Appl. Physiol. (Bethesda, Md: 1985). 2009; 106: 796-803
        • Wilcox R.G.
        • Bennett T.
        • Macdonald I.A.
        • Herbert M.
        • Skene A.M.
        The effects of acute or chronic ingestion of propranolol or metoprolol on the physiological responses to prolonged, submaximal exercise in hypertensive men.
        Br. J. Clin. Pharmacol. 1984; 17: 273-281
        • Wilkins B.W.
        • Chung L.H.
        • Tublitz N.J.
        • Wong B.J.
        • Minson C.T.
        Mechanisms of vasoactive intestinal peptide-mediated vasodilation in human skin.
        J. Appl. Physiol. (Bethesda, Md: 1985). 2004; 97: 1291-1298
        • Wilson T.E.
        • Cui J.
        • Crandall C.G.
        Absence of arterial baroreflex modulation of skin sympathetic activity and sweat rate during whole-body heating in humans.
        J. Physiol. 2001; 536: 615-623
        • Wolf J.E.
        • Maibach H.I.
        Palmar eccrine sweating — the role of adrenergic and cholinergic mediators.
        Br. J. Dermatol. 1974; 91: 439-446
        • Wong B.J.
        Sensory nerves and nitric oxide contribute to reflex cutaneous vasodilation in humans.
        Am. J. Physiol.-Reg. I. 2013; 304: R651-R656
        • Wong B.J.
        • Fieger S.M.
        Transient receptor potential vanilloid type 1 channels contribute to reflex cutaneous vasodilation in humans.
        J. Appl. Physiol. (Bethesda, Md: 1985). 2012; 112: 2037-2042
        • Wong B.J.
        • Minson C.T.
        Neurokinin-1 receptor desensitization attenuates cutaneous active vasodilatation in humans.
        J. Physiol. 2006; 577: 1043-1051
        • Wong B.J.
        • Wilkins B.W.
        • Minson C.T.
        H1 but not H2 histamine receptor activation contributes to the rise in skin blood flow during whole body heating in humans.
        J. Physiol. 2004; 560: 941-948
        • Wurster R.D.
        • McCook R.D.
        Influence of rate of change in skin temperature on sweating.
        J. Appl. Physiol. 1969; 27: 237-240
        • Yamashita Y.
        • Ogawa T.
        • Ohnishi N.
        • Imamura R.
        • Sugenoya J.
        Local effect of vasoactive intestinal polypeptide on human sweat-gland function.
        Jpn J Physiol. 1987; 37: 929-936
        • Yamazaki F.
        • Sone R.
        • Ikegami H.
        Responses of Sweating and Body Temperature to Sinusoidal Exercise.
        1994
        • Yamazaki F.
        • Fujii N.
        • Sone R.
        • Ikegami H.
        Responses of Sweating and Body Temperature to Sinusoidal Exercise in Physically Trained men.
        1996
        • Yanagimoto S.
        • Kuwahara T.
        • Zhang Y.
        • Koga S.
        • Inoue Y.
        • Kondo N.
        Intensity-dependent thermoregulatory responses at the onset of dynamic exercise in mildly heated humans.
        Am. J. Physiol.-Reg. I. 2003; 285: R200-R207
        • Yu X.-H.
        • Cui L.-B.
        • Wu K.
        • Zheng X.-L.
        • Cayabyab F.S.
        • Chen Z.-W.
        • Tang C.-K.
        Hydrogen sulfide as a potent cardiovascular protective agent.
        Clin. Chim. Acta. 2014; 437: 78-87
        • Zelis R.
        • Mason D.T.
        • Braunwald E.
        Partition of blood flow to the cutaneous and muscular beds of the forearm at rest and during leg exercise in normal subjects and in patients with heart failure.
        Circ. Res. 1969; 24: 799-806
        • Zhong L.
        • Lv L.
        • Yang J.
        • Liao X.
        • Yu J.
        • Wang R.
        • Zhou P.
        Inhibitory effect of hydrogen sulfide on platelet aggregation and the underlying mechanisms.
        J. Cardiovasc. Pharmacol. 2014; 64: 481-487