Advertisement
Rapid Communication| Volume 216, P33-38, January 2019

Download started.

Ok

Reduced colonic smooth muscle cholinergic responsiveness is associated with impaired bowel motility after chronic experimental high-level spinal cord injury

  • Author Footnotes
    1 Authors contributed equally.
    ,
    Author Footnotes
    2 ICORD-BSCC, University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada.
    B. Frias
    Footnotes
    1 Authors contributed equally.
    2 ICORD-BSCC, University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada.
    Affiliations
    International Collaboration on Repair Discoveries, University of British Columbia, Canada
    Search for articles by this author
  • Author Footnotes
    1 Authors contributed equally.
    ,
    Author Footnotes
    3 Foothills Hospital Health Science Centre, Calgary, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
    A.A. Phillips
    Footnotes
    1 Authors contributed equally.
    3 Foothills Hospital Health Science Centre, Calgary, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
    Affiliations
    International Collaboration on Repair Discoveries, University of British Columbia, Canada

    Experimental Medicine Program, University of British Columbia, Canada

    Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada
    Search for articles by this author
  • Author Footnotes
    2 ICORD-BSCC, University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada.
    J.W. Squair
    Footnotes
    2 ICORD-BSCC, University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada.
    Affiliations
    International Collaboration on Repair Discoveries, University of British Columbia, Canada
    Search for articles by this author
  • Author Footnotes
    2 ICORD-BSCC, University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada.
    A.H.X. Lee
    Footnotes
    2 ICORD-BSCC, University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada.
    Affiliations
    International Collaboration on Repair Discoveries, University of British Columbia, Canada

    Experimental Medicine Program, University of British Columbia, Canada
    Search for articles by this author
  • Author Footnotes
    4 Department of Anesthesiology, Pharmacology & Therapeutics Faculty of Medicine University of British Columbia, 2176 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.
    I. Laher
    Footnotes
    4 Department of Anesthesiology, Pharmacology & Therapeutics Faculty of Medicine University of British Columbia, 2176 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.
    Affiliations
    Department of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia, Canada
    Search for articles by this author
  • A.V. Krassioukov
    Correspondence
    Corresponding author at: ICORD-BSCC, University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada.
    Affiliations
    International Collaboration on Repair Discoveries, University of British Columbia, Canada

    Experimental Medicine Program, University of British Columbia, Canada

    Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Canada

    GF Strong Rehabilitation Center, Vancouver Coastal Health, Vancouver, BC, Canada
    Search for articles by this author
  • Author Footnotes
    1 Authors contributed equally.
    2 ICORD-BSCC, University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada.
    3 Foothills Hospital Health Science Centre, Calgary, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
    4 Department of Anesthesiology, Pharmacology & Therapeutics Faculty of Medicine University of British Columbia, 2176 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.
Published:September 01, 2018DOI:https://doi.org/10.1016/j.autneu.2018.08.005

      Abstract

      The mechanisms underlying bowel dysfunction after high-level spinal cord injury (SCI) are poorly understood. However, impaired supraspinal sympathetic and parasympathetic control is likely a major contributing factor. Disruption of the descending autonomic pathways traversing the spinal cord was achieved by a T3 complete spinal cord transection, and colonic function was examined in vivo and ex vivo four weeks post-injury. Total gastrointestinal transit time (TGTT) was reduced and contractility of the proximal and distal colon was impaired due to reduced M3 receptor sensitivity. These data describe a clinically relevant model of bowel dysfunction after SCI.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Autonomic Neuroscience: Basic and Clinical
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Anderson K.D.
        Targeting recovery: priorities of the spinal cord-injured population.
        J. Neurotrauma. 2004; 21: 1371-1383
        • Burns A.S.
        • St-Germain D.
        • Connolly M.
        • Delparte J.J.
        • Guindon A.
        • Hitzig S.L.
        • Craven B.C.
        Phenomenological study of neurogenic bowel from the perspective of individuals living with spinal cord injury.
        Arch. Phys. Med. Rehabil. 2015; 96: 49-55
        • Callaghan B.
        • Furness J.B.
        • Pustovit R.V.
        Neural pathways for colorectal control, relevance to spinal cord injury and treatment: a narrative review.
        Spinal Cord. 2018 Mar; 56 ([Epub 2017 Nov 16]): 199-205https://doi.org/10.1038/s41393-017-0026-2
        • Callaghan B.
        • Furness J.B.
        • Pustovit R.V.
        Neural pathways for colorectal control, relevance to spinal cord injury and treatment: a narrative review.
        Spinal Cord. 2018; 56: 199-205
        • Capeto F.A.
        • Lima F.J.
        • Okoba W.
        • Ramos F.L.
        • Messias T.F.
        • Rigonatto G.A.
        • Sbragia L.
        • Magalhaes P.J.
        • Melo-Filho A.A.
        Contractile profile of esophageal and gastric fundus strips in experimental doxorubicin-induced esophageal atresia.
        Braz. J. Med. Biol. Res. 2015; 48: 458-464
        • Christensen P.
        • Olsen N.
        • Krogh K.
        • Bacher T.
        • Laurberg S.
        Scintigraphic assessment of retrograde colonic washout in fecal incontinence and constipation.
        Dis. Colon rectum. 2003; 46: 68-76
        • Consortium for Spinal Cord Medicine
        Bladder management for adults with spinal cord injury: a clinical practice guideline for health-care providers.
        J. Spinal Cord Med. 2006; 29: 527-573
        • Dale H.H.
        The action of certain esters and ethers of choline, and their relation to muscarine.
        J. Pharmacol. Exp. Ther. 1914; 6: 147-190
        • Emmanuel A.V.
        • Chung E.A.
        • Kamm M.A.
        • Middleton F.
        Relationship between gut-specific autonomic testing and bowel dysfunction in spinal cord injury patients.
        Spinal Cord. 2009; 47: 623-627
        • Faaborg P.M.
        • Christensen P.
        • Finnerup N.
        • Laurberg S.
        • Krogh K.
        The pattern of colorectal dysfunction changes with time since spinal cord injury.
        Spinal Cord. 2008; 46: 234-238
        • Fajardo N.R.
        • Pasiliao R.V.
        • Modeste-Duncan R.
        • Creasey G.
        • Bauman W.A.
        • Korsten M.A.
        Decreased colonic motility in persons with chronic spinal cord injury.
        Am. J. Gastroenterol. 2003; 98: 128-134
        • Fealey R.D.
        • Szurszewski J.H.
        • Merritt J.L.
        • Dimagno E.P.
        Effect of traumatic spinal cord transection on human upper gastrointestinal motility and gastric emptying.
        Gastroenterology. 1984; 87: 69-75
        • Ferens D.M.
        • Habgood M.D.
        • Saunders N.R.
        • Tan Y.H.
        • Brown D.J.
        • Brock J.A.
        • Furness J.B.
        Stimulation of defecation in spinal cord-injured rats by a centrally acting ghrelin receptor agonist.
        Spinal Cord. 2011; 49: 1036-1041
        • Furness J.B.
        The enteric nervous system: normal functions and enteric neuropathies.
        Neurogastroenterol. Motil. 2008; 20: 32-38
        • Furness J.B.
        • Callaghan B.P.
        • Rivera L.R.
        • Cho H.J.
        The enteric nervous system and gastrointestinal innervation: integrated local and central control.
        Adv. Exp. Med. Biol. 2014; 817: 39-71
        • Hedsund C.
        • Joensson I.M.
        • Gregersen T.
        • Fynne L.
        • Schlageter V.
        • Krogh K.
        Magnet tracking allows assessment of regional gastrointestinal transit times in children.
        Clin. Exp. Gastroenterol. 2013; 6: 201-208
        • Hermann G.E.
        • Bresnahan J.C.
        • Holmes G.M.
        • Rogers R.C.
        • Beattie M.S.
        Descending projections from the nucleus raphe obscurus to pudendal motoneurons in the male rat.
        J. Comp. Neurol. 1998; 397: 458-474
        • Holmes G.M.
        • Martau J.M.
        • Hermann G.E.
        • Rogers R.C.
        • Bresnahan J.C.
        • Beattie M.S.
        Nucleus raphe obscurus (nRO) regulation of anorectal motility in rats.
        Brain Res. 1997; 759: 197-204
        • Holmes G.M.
        • Hermann G.E.
        • Rogers R.C.
        • Bresnahan J.C.
        • Beattie M.S.
        Dissociation of the effects of nucleus raphe obscurus or rostral ventrolateral medulla lesions on eliminatory and sexual reflexes.
        Physiol. Behav. 2002; 75: 49-55
        • Hou S.
        • Rabchevsky A.G.
        Autonomic consequences of spinal cord injury.
        Compr. Physiol. 2014; 4: 1419-1453
        • Hou S.
        • Duale H.
        • Cameron A.A.
        • Abshire S.M.
        • Lyttle T.S.
        • Rabchevsky A.G.
        Plasticity of lumbosacral propriospinal neurons is associated with the development of autonomic dysreflexia after thoracic spinal cord transection.
        J. Comp. Neurol. 2008; 509: 382-399
        • Joo M.C.
        • Kim Y.S.
        • Choi E.S.
        • Oh J.T.
        • Park H.J.
        • Lee M.Y.
        Changes in the muscarinic receptors on the colonic smooth muscles of rats with spinal cord injury.
        Ann. Rehabil. Med. 2011; 35: 589-598
        • Keshavarzian A.
        • Barnes W.E.
        • Bruninga K.
        • Nemchausky B.
        • Mermall H.
        • Bushnell D.
        Delayed colonic transit in spinal cord-injured patients measured by indium-111 amberlite scintigraphy.
        Am. J. Gastroenterol. 1995; 90: 1295-1300
        • Korsten M.A.
        • Rosman A.S.
        • Ng A.
        • Cavusoglu E.
        • Spungen A.M.
        • Radulovic M.
        • Wecht J.
        • Bauman W.A.
        Infusion of neostigmine-glycopyrrolate for bowel evacuation in persons with spinal cord injury.
        Am. J. Gastroenterol. 2005; 100: 1560-1565
        • Korsten M.A.
        • Singal A.K.
        • Monga A.
        • Chaparala G.
        • Khan A.M.
        • Palmon R.
        • Mendoza J.R.
        • Lirio J.P.
        • Rosman A.S.
        • Spungen A.
        • Bauman W.A.
        Anorectal stimulation causes increased colonic motor activity in subjects with spinal cord injury.
        J. Spinal Cord Med. 2007; 30: 31-35
        • Krassioukov A.
        • Eng J.J.
        • Claxton G.
        • Sakakibara B.M.
        • Shum S.
        Neurogenic bowel management after spinal cord injury: a systematic review of the evidence.
        Spinal Cord. 2010; 48: 718-733
        • Krenz N.R.
        • Weaver L.C.
        Effect of spinal cord transection on N-methyl-d-aspartate receptors in the cord.
        J. Neurotrauma. 1998; 15: 1027-1036
        • Krenz N.R.
        • Meakin S.O.
        • Krassioukov A.V.
        • Weaver L.C.
        Neutralizing intraspinal nerve growth factor blocks autonomic dysreflexia caused by spinal cord injury.
        J. Neurosci. 1999; 19: 7405-7414
        • Krogh K.
        • Mosdal C.
        • Laurberg S.
        Gastrointestinal and segmental colonic transit times in patients with acute and chronic spinal cord lesions.
        Spinal Cord. 2000; 38: 615-621
        • Li Z.S.
        • Schmauss C.
        • Cuenca A.
        • Ratcliffe E.
        • Gershon M.D.
        Physiological modulation of intestinal motility by enteric dopaminergic neurons and the D2 receptor: analysis of dopamine receptor expression, location, development, and function in wild-type and knock-out mice.
        J. Neurosci. 2006; 26: 2798-2807
        • Li Z.
        • Chalazonitis A.
        • Huang Y.Y.
        • Mann J.J.
        • Margolis K.G.
        • Yang Q.M.
        • Kim D.O.
        • Cote F.
        • Mallet J.
        • Gershon M.D.
        Essential roles of enteric neuronal serotonin in gastrointestinal motility and the development/survival of enteric dopaminergic neurons.
        J. Neurosci. 2011; 31: 8998-9009
        • Lynch A.C.
        • Antony A.
        • Dobbs B.R.
        • Frizelle F.A.
        Bowel dysfunction following spinal cord injury.
        Spinal Cord. 2001; 39: 193-203
        • Moulin D.E.
        • Clark A.J.
        • Gilron I.
        • Ware M.A.
        • Watson C.P.
        • Sessle B.J.
        • Coderre T.
        • Morley-Forster P.K.
        • Stinson J.
        • Boulanger A.
        • Peng P.
        • Finley G.A.
        • Taenzer P.
        • Squire P.
        • Dion D.
        • Cholkan A.
        • Gilani A.
        • Gordon A.
        • Henry J.
        • Jovey R.
        • Lynch M.
        • Mailis-Gagnon A.
        • Panju A.
        • Rollman G.B.
        • Velly A.
        • Canadian Pain S.
        Pharmacological management of chronic neuropathic pain — consensus statement and guidelines from the Canadian Pain Society.
        Pain Res. Manag. 2007; 12: 13-21
        • Osinski M.A.
        • Bass P.
        Increased active stress generation of denervated rat intestinal smooth muscle: functional analysis of muscarinic receptor population.
        J. Pharmacol. Exp. Ther. 1994; 268: 1368-1373
        • Phillips A.A.
        • Krassioukov A.V.
        Contemporary cardiovascular concerns after spinal cord injury: mechanisms, maladaptations, and management.
        J. Neurotrauma. 2015 Dec 15; 32 ([Epub 2015 Sep 1]): 1927-1942https://doi.org/10.1089/neu.2015.3903
        • Phillips A.A.
        • Matin N.
        • Frias B.
        • Zheng M.M.
        • Jia M.
        • West C.
        • Dorrance A.M.
        • Laher I.
        • Krassioukov A.V.
        Rigid and remodelled: cerebrovascular structure and function after experimental high-thoracic spinal cord transection.
        J. Physiol. 2016; 594: 1677-1688
        • Qualls-Creekmore E.
        • Tong M.
        • Holmes G.M.
        Time-course of recovery of gastric emptying and motility in rats with experimental spinal cord injury.
        Neurogastroenterol. Motil. 2010; 22: e27-e28
        • Rasmussen M.M.
        • Krogh K.
        • Clemmensen D.
        • Bluhme H.
        • Rawashdeh Y.
        • Christensen P.
        Colorectal transport during defecation in subjects with supraconal spinal cord injury.
        Spinal Cord. 2013; 51: 683-687
        • Shafton A.D.
        • Furness J.B.
        • Ferens D.
        • Bogeski G.
        • Koh S.L.
        • Lean N.P.
        • Kitchener P.D.
        The visceromotor responses to colorectal distension and skin pinch are inhibited by simultaneous jejunal distension.
        Pain. 2006; 123: 127-136
        • Stinneford J.G.
        • Keshavarzian A.
        • Nemchausky B.A.
        • Doria M.I.
        • Durkin M.
        Esophagitis and esophageal motor abnormalities in patients with chronic spinal cord injuries.
        Paraplegia. 1993; 31: 384-392
        • Torjman M.C.
        • Joseph J.I.
        • Munsick C.
        • Morishita M.
        • Grunwald Z.
        Effects of isoflurane on gastrointestinal motility after brief exposure in rats.
        Int. J. Pharm. 2005; 294: 65-71
        • Tugay M.
        • Yildiz F.
        • Utkan T.
        • Ulak G.
        • Gacar N.
        • Erden F.
        Impaired esophageal reactivity in adriamycin-induced rat esophageal atresia: an in vitro study.
        J. Pediatr. Surg. 2001; 36: 1569-1573
        • Tugay M.
        • Yildiz F.
        • Utkan T.
        • Sarioglu Y.
        • Gacar N.
        Gastric smooth muscle contractility changes in the esophageal atresia rat model: an in vitro study.
        J. Pediatr. Surg. 2003; 38: 1366-1370
        • Uchiyama T.
        • Chess-Williams R.
        Muscarinic receptor subtypes of the bladder and gastrointestinal tract.
        J. Smooth Muscle Res. 2004; 40: 237-247
        • White A.R.
        • Holmes G.M.
        Anatomical and functional changes to the colonic neuromuscular compartment after experimental spinal cord injury.
        J. Neurotrauma. 2018; 35: 1079-1090
        • Williams 3rd, R.E.
        • Bauman W.A.
        • Spungen A.M.
        • Vinnakota R.R.
        • Farid R.Z.
        • Galea M.
        • Korsten M.A.
        SmartPill technology provides safe and effective assessment of gastrointestinal function in persons with spinal cord injury.
        Spinal Cord. 2012; 50: 81-84
        • Yeoh M.
        • Mclachlan E.M.
        • Brock J.A.
        Chronic decentralization potentiates neurovascular transmission in the isolated rat tail artery, mimicking the effects of spinal transection.
        J. Physiol. 2004; 561: 583-596