Advertisement

Glia and central cardiorespiratory pathology

      Highlights

      • Cardiorespiratory pathology includes hypertension and myocardial infarction.
      • Microglia and astrocytes provide immunity, injury repair, and metabolic support to CNS neurons.
      • Glial cells play a role in the development of cardiorespiratory pathology.

      Abstract

      Respiration and blood pressure are primarily controlled by somatic and autonomic motor neurones, respectively. Central cardiorespiratory control is critical in moment-to-moment survival, but it also has a role in the development and maintenance of chronic pathological conditions such as hypertension. The glial cells of the brain are non-neuronal cells with metabolic, immune, and developmental functions. Recent evidence shows that glia play an active role in supporting and regulating the neuronal circuitry which drives the cardiorespiratory system. Here we will review the activities of two key types of glial cell, microglia and astrocytes, in assisting normal central cardiorespiratory control and in pathology.

      Abbreviations:

      2K1C (two-kidney one-clip), ACE (angiotensin converting enzyme), ADP (adenosine diphosphate), AIH (acute intermittent hypoxia), AngII (angiotensin II), ATP (adenosine triphosphate), CIH (chronic intermittent hypoxia), CNS (central nervous system), CX3CR1 (fractalkine receptor), ICV (intracerebroventricular), IFNγ (interferon gamma), IL-1β (interleukin-1 beta), IL-4, IL-6, IL-10, IL-13 (interleukin 4, 6, 10, 13), JAM-1 (junctional adhesion molecule 1), LPS (lipopolysaccharide), mGluR (metabotropic glutamate receptor), NTS (nucleus tractus solitarius), pLTF (phrenic long-term facilitation), PVN (paraventricular nucleus of the hypothalamus), RSNA (renal sympathetic nerve activity), RVLM (rostral ventrolateral medulla), SHR (spontaneously hypertensive rats), SHR-SP (stroke-prone spontaneously hypertensive rats), TLR4 (toll-like receptor 4), TNFα (tumour necrosis factor alpha), UDP (uridine diphosphate), WKY (Wistar-Kyoto rats)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Autonomic Neuroscience: Basic and Clinical
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abbracchio M.P.
        • et al.
        International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy.
        Pharmacol. Rev. 2006; 58: 281-341https://doi.org/10.1124/pr.58.3.3
        • Accorsi-Mendonca D.
        • et al.
        Enhanced firing in NTS induced by short-term sustained hypoxia is modulated by glia-neuron interaction.
        J. Neurosci. 2015; 35: 6903-6917https://doi.org/10.1523/JNEUROSCI.4598-14.2015
        • Agosto-Marlin I.M.
        • Nichols N.L.
        • Mitchell G.S.
        Adenosine-dependent phrenic motor facilitation is inflammation resistant.
        J. Neurophysiol. 2017; 117: 836-845https://doi.org/10.1152/jn.00619.2016
        • Angelova P.R.
        • et al.
        Functional oxygen sensitivity of astrocytes.
        J. Neurosci. 2015; 35: 10460-10473https://doi.org/10.1523/JNEUROSCI.0045-15.2015
        • Angulo M.C.
        • Kozlov A.S.
        • Charpak S.
        • Audinat E.
        Glutamate released from glial cells synchronizes neuronal activity in the hippocampus.
        J. Neurosci. 2004; 24: 6920-6927https://doi.org/10.1523/JNEUROSCI.0473-04.2004
        • Barbierato M.
        • et al.
        Astrocyte-microglia cooperation in the expression of a pro-inflammatory phenotype.
        CNS Neurol. Disord. Drug Targets. 2013; 12: 608-618https://doi.org/10.2174/18715273113129990064
        • Benarroch E.
        • Microglia E.
        Multiple roles in surveillance, circuit shaping, and response to injury.
        Neurology. 2013; 81: 1079-1088https://doi.org/10.1212/WNL.0b013e3182a4a577
        • Bezzi P.
        • et al.
        CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity.
        Nat. Neurosci. 2001; 4: 702-710https://doi.org/10.1038/89490
        • Bianco F.
        • et al.
        Astrocyte-derived ATP induces vesicle shedding and IL-1 beta release from microglia.
        J. Immunol. 2005; 174: 7268-7277
        • Boddeke E.W.
        • et al.
        Functional expression of the fractalkine (CX3C) receptor and its regulation by lipopolysaccharide in rat microglia.
        Eur. J. Pharmacol. 1999; 374: 309-313https://doi.org/10.1016/s0014-2999(99)00307-6
        • Cardona S.M.
        • et al.
        Disruption of fractalkine signaling leads to microglial activation and neuronal damage in the diabetic retina.
        ASN Neuro. 2015; 7https://doi.org/10.1177/1759091415608204
        • Chai H.
        • et al.
        Neural circuit-specialized astrocytes: transcriptomic, proteomic, morphological, and functional evidence.
        Neuron. 2017; 95 (e539): 531-549https://doi.org/10.1016/j.neuron.2017.06.029
        • Chan S.H.
        • et al.
        NADPH oxidase-derived superoxide anion mediates angiotensin II-induced pressor effect via activation of p38 mitogen-activated protein kinase in the rostral ventrolateral medulla.
        Circ. Res. 2005; 97: 772-780https://doi.org/10.1161/01.RES.0000185804.79157.C0
        • Chen Z.
        • et al.
        Microglial displacement of inhibitory synapses provides neuroprotection in the adult brain.
        Nat. Commun. 2014; 5: 4486https://doi.org/10.1038/ncomms5486
        • Costa K.M.
        • Moraes D.J.
        • Machado B.H.
        Acute inhibition of glial cells in the NTS does not affect respiratory and sympathetic activities in rats exposed to chronic intermittent hypoxia.
        Brain Res. 2013; 1496: 36-48https://doi.org/10.1016/j.brainres.2012.12.003
        • Costa-Silva J.H.
        • Zoccal D.B.
        • Machado B.H.
        Chronic intermittent hypoxia alters glutamatergic control of sympathetic and respiratory activities in the commissural NTS of rats.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012; 302: R785-R793https://doi.org/10.1152/ajpregu.00363.2011
        • Dange R.B.
        • Agarwal D.
        • Teruyama R.
        • Francis J.
        Toll-like receptor 4 inhibition within the paraventricular nucleus attenuates blood pressure and inflammatory response in a genetic model of hypertension.
        J. Neuroinflammation. 2015; 12: 31https://doi.org/10.1186/s12974-015-0242-7
        • De Biase L.M.
        • et al.
        Local cues establish and maintain region-specific phenotypes of basal ganglia microglia.
        Neuron. 2017; 95 (e346): 341-356https://doi.org/10.1016/j.neuron.2017.06.020
        • De Geyter D.
        • et al.
        Spontaneously hypertensive rats display reduced microglial activation in response to ischemic stroke and lipopolysaccharide.
        J. Neuroinflammation. 2012; 9: 114https://doi.org/10.1186/1742-2094-9-114
        • Derecki N.C.
        • et al.
        Wild-type microglia arrest pathology in a mouse model of Rett syndrome.
        Nature. 2012; 484: 105-109https://doi.org/10.1038/nature10907
        • Dick T.E.
        • Hsieh Y.H.
        • Wang N.
        • Prabhakar N.
        Acute intermittent hypoxia increases both phrenic and sympathetic nerve activities in the rat.
        Exp. Physiol. 2007; 92: 87-97https://doi.org/10.1113/expphysiol.2006.035758
        • Du D.
        • et al.
        Microglial P2X(7) receptor in the hypothalamic paraventricular nuclei contributes to sympathoexcitatory responses in acute myocardial infarction rat.
        Neurosci. Lett. 2015; 587: 22-28https://doi.org/10.1016/j.neulet.2014.12.026
        • Dworak M.
        • et al.
        Sustained activation of microglia in the hypothalamic PVN following myocardial infarction.
        Auton. Neurosci. 2012; 169: 70-76https://doi.org/10.1016/j.autneu.2012.04.004
        • Dworak M.
        • et al.
        Attenuation of microglial and neuronal activation in the brain by ICV minocycline following myocardial infarction.
        Auton. Neurosci. 2014; 185: 43-50https://doi.org/10.1016/j.autneu.2014.03.007
        • Ferrini F.
        • De Koninck Y.
        Microglia control neuronal network excitability via BDNF signalling.
        Neural Plast. 2013; 2013: 429815https://doi.org/10.1155/2013/429815
        • Filosa J.A.
        • Iddings J.A.
        Astrocyte regulation of cerebral vascular tone.
        Am. J. Physiol. Heart Circ. Physiol. 2013; 305: H609-H619https://doi.org/10.1152/ajpheart.00359.2013
        • Gee J.R.
        • Keller J.N.
        Astrocytes: regulation of brain homeostasis via apolipoprotein E.
        Int. J. Biochem. Cell Biol. 2005; 37: 1145-1150https://doi.org/10.1016/j.biocel.2004.10.004
        • Geraldes V.
        • Goncalves-Rosa N.
        • Tavares C.
        • Paton J.F.R.
        • Rocha I.
        Reversing gene expression in cardiovascular target organs following chronic depression of the paraventricular nucleus of hypothalamus and rostral ventrolateral medulla in spontaneous hypertensive rats.
        Brain Res. 2016; 1646: 109-115https://doi.org/10.1016/j.brainres.2016.05.041
        • Goda S.
        • et al.
        CX3C-chemokine, fractalkine-enhanced adhesion of THP-1 cells to endothelial cells through integrin-dependent and -independent mechanisms.
        J. Immunol. 2000; 164: 4313-4320
        • Goel R.
        • et al.
        Hypertension exacerbates predisposition to neurodegeneration and memory impairment in the presence of a neuroinflammatory stimulus: protection by angiotensin converting enzyme inhibition.
        Pharmacol. Biochem. Behav. 2015; 133: 132-145https://doi.org/10.1016/j.pbb.2015.04.002
        • Gourine A.V.
        • Llaudet E.
        • Dale N.
        • Spyer K.M.
        Release of ATP in the ventral medulla during hypoxia in rats: role in hypoxic ventilatory response.
        J. Neurosci. 2005; 25: 1211-1218https://doi.org/10.1523/JNEUROSCI.3763-04.2005
        • Gourine A.V.
        • et al.
        Release of ATP in the central nervous system during systemic inflammation: real-time measurement in the hypothalamus of conscious rabbits.
        J. Physiol. 2007; 585: 305-316https://doi.org/10.1113/jphysiol.2007.143933
        • Gourine A.V.
        • et al.
        Astrocytes control breathing through pH-dependent release of ATP.
        Science. 2010; 329: 571-575https://doi.org/10.1126/science.1190721
        • Gowrisankar Y.V.
        • Clark M.A.
        Regulation of angiotensinogen expression by angiotensin II in spontaneously hypertensive rat primary astrocyte cultures.
        Brain Res. 2016; 1643: 51-58https://doi.org/10.1016/j.brainres.2016.04.059
        • Grabert K.
        • et al.
        Microglial brain region-dependent diversity and selective regional sensitivities to aging.
        Nat. Neurosci. 2016; 19: 504-516https://doi.org/10.1038/nn.4222
        • Gyoneva S.
        • Orr A.G.
        • Traynelis S.F.
        Differential regulation of microglial motility by ATP/ADP and adenosine.
        Parkinsonism Relat. Disord. 2009; 15: S195-S199https://doi.org/10.1016/S1353-8020(09)70813-2
        • de Haas A.H.
        • Boddeke H.W.
        • Biber K.
        Region-specific expression of immunoregulatory proteins on microglia in the healthy CNS.
        Glia. 2008; 56: 888-894https://doi.org/10.1002/glia.20663
        • Hamilton N.
        • et al.
        Mechanisms of ATP- and glutamate-mediated calcium signaling in white matter astrocytes.
        Glia. 2008; 56: 734-749https://doi.org/10.1002/glia.20649
        • Harrison J.K.
        • et al.
        Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia.
        Proc. Natl. Acad. Sci. 1998; 95: 10896-10901https://doi.org/10.1073/pnas.95.18.10896
        • Hayashi Y.
        • Ishibashi H.
        • Hashimoto K.
        • Nakanishi H.
        Potentiation of the NMDA receptor-mediated responses through the activation of the glycine site by microglia secreting soluble factors.
        Glia. 2006; 53: 660-668https://doi.org/10.1002/glia.20322
        • Haynes S.E.
        • et al.
        The P2Y12 receptor regulates microglial activation by extracellular nucleotides.
        Nat. Neurosci. 2006; 9: 1512-1519https://doi.org/10.1038/nn1805
        • Hines D.J.
        • Choi H.B.
        • Hines R.M.
        • Phillips A.G.
        • MacVicar B.A.
        Prevention of LPS-induced microglia activation, cytokine production and sickness behavior with TLR4 receptor interfering peptides.
        PLoS One. 2013; 8e60388https://doi.org/10.1371/journal.pone.0060388
        • Huxtable A.G.
        • Smith S.M.
        • Vinit S.
        • Watters J.J.
        • Mitchell G.S.
        Systemic LPS induces spinal inflammatory gene expression and impairs phrenic long-term facilitation following acute intermittent hypoxia.
        J. Appl. Physiol. 2013; 114: 879-887https://doi.org/10.1152/japplphysiol.01347.2012
        • Huxtable A.G.
        • Smith S.M.
        • Peterson T.J.
        • Watters J.J.
        • Mitchell G.S.
        Intermittent hypoxia-induced spinal inflammation impairs respiratory motor plasticity by a spinal p38 MAP kinase-dependent mechanism.
        J. Neurosci. 2015; 35: 6871-6880https://doi.org/10.1523/JNEUROSCI.4539-14.2015
        • Ikeshima-Kataoka H.
        • Yasui M.
        Correlation between astrocyte activity and recovery from blood-brain barrier breakdown caused by brain injury.
        Neuroreport. 2016; 27: 894-900https://doi.org/10.1097/WNR.0000000000000619
        • Isegawa K.
        • Hirooka Y.
        • Katsuki M.
        • Kishi T.
        • Sunagawa K.
        Angiotensin II type 1 receptor expression in astrocytes is upregulated leading to increased mortality in mice with myocardial infarction-induced heart failure.
        Am. J. Physiol. Heart Circ. Physiol. 2014; 307: H1448-H1455https://doi.org/10.1152/ajpheart.00462.2014
        • Janzer R.C.
        • Raff M.C.
        Astrocytes induce blood-brain barrier properties in endothelial cells.
        Nature. 1987; 325: 253-257https://doi.org/10.1038/325253a0
        • Jeremic A.
        • Jeftinija K.
        • Stevanovic J.
        • Glavaski A.
        • Jeftinija S.
        ATP stimulates calcium-dependent glutamate release from cultured astrocytes.
        J. Neurochem. 2001; 77: 664-675
        • Kang Y.M.
        • Zhang Z.H.
        • Xue B.
        • Weiss R.M.
        • Felder R.B.
        Inhibition of brain proinflammatory cytokine synthesis reduces hypothalamic excitation in rats with ischemia-induced heart failure.
        Am. J. Physiol. Heart Circ. Physiol. 2008; 295: H227-H236https://doi.org/10.1152/ajpheart.01157.2007
        • Kang Y.M.
        • et al.
        Brain tumour necrosis factor-alpha modulates neurotransmitters in hypothalamic paraventricular nucleus in heart failure.
        Cardiovasc. Res. 2009; 83: 737-746https://doi.org/10.1093/cvr/cvp160
        • Kapoor K.
        • Bhandare A.M.
        • Mohammed S.
        • Farnham M.M.
        • Pilowsky P.M.
        Microglial number is related to the number of tyrosine hydroxylase neurons in SHR and normotensive rats.
        Auton. Neurosci. 2016; 198: 10-18https://doi.org/10.1016/j.autneu.2016.05.005
        • Kapoor K.
        • et al.
        Dynamic changes in the relationship of microglia to cardiovascular neurons in response to increases and decreases in blood pressure.
        Neuroscience. 2016; 329: 12-29https://doi.org/10.1016/j.neuroscience.2016.04.044
        • Kasymov V.
        • et al.
        Differential sensitivity of brainstem versus cortical astrocytes to changes in pH reveals functional regional specialization of astroglia.
        J. Neurosci. 2013; 33: 435-441https://doi.org/10.1523/JNEUROSCI.2813-12.2013
        • Kato G.
        • et al.
        Microglial contact prevents excess depolarization and rescues neurons from excitotoxicity.
        eNeuro. 2016; 3https://doi.org/10.1523/ENEURO.0004-16.2016
        • Kettenmann H.
        • Hanisch U.K.
        • Noda M.
        • Verkhratsky A.
        Physiology of microglia.
        Physiol. Rev. 2011; 91: 461-553https://doi.org/10.1152/physrev.00011.2010
        • Kishi T.
        • et al.
        Increased reactive oxygen species in rostral ventrolateral medulla contribute to neural mechanisms of hypertension in stroke-prone spontaneously hypertensive rats.
        Circulation. 2004; 109: 2357-2362https://doi.org/10.1161/01.CIR.0000128695.49900.12
        • Klapal L.
        • Igelhorst B.A.
        • Dietzel-Meyer I.D.
        Changes in neuronal excitability by activated microglia: differential Na(+) current upregulation in pyramid-shaped and bipolar neurons by TNF-alpha and IL-18.
        Front. Neurol. 2016; 7: 44https://doi.org/10.3389/fneur.2016.00044
        • Lambert G.W.
        • Esler M.
        Handbook of Psychocardiology.
        2016: 747-758
        • Li Y.
        • Du X.F.
        • Liu C.S.
        • Wen Z.L.
        • Du J.L.
        Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo.
        Dev. Cell. 2012; 23: 1189-1202https://doi.org/10.1016/j.devcel.2012.10.027
        • Li M.
        • Silberberg S.D.
        • Swartz K.J.
        Subtype-specific control of P2X receptor channel signaling by ATP and Mg2+.
        Proc. Natl. Acad. Sci. U. S. A. 2013; 110: E3455-E3463https://doi.org/10.1073/pnas.1308088110
        • Li H.B.
        • et al.
        Chronic infusion of lisinopril into hypothalamic paraventricular nucleus modulates cytokines and attenuates oxidative stress in rostral ventrolateral medulla in hypertension.
        Toxicol. Appl. Pharmacol. 2014; 279: 141-149https://doi.org/10.1016/j.taap.2014.06.004
        • Liddelow S.A.
        • et al.
        Neurotoxic reactive astrocytes are induced by activated microglia.
        Nature. 2017; 541: 481-487https://doi.org/10.1038/nature21029
        • Ling L.
        • et al.
        Chronic intermittent hypoxia elicits serotonin-dependent plasticity in the central neural control of breathing.
        J. Neurosci. 2001; 21: 5381-5388
        • Lioy D.T.
        • et al.
        A role for glia in the progression of Rett's syndrome.
        Nature. 2011; 475: 497-500https://doi.org/10.1038/nature10214
        • Liu H.T.
        • Tashmukhamedov B.A.
        • Inoue H.
        • Okada Y.
        • Sabirov R.Z.
        Roles of two types of anion channels in glutamate release from mouse astrocytes under ischemic or osmotic stress.
        Glia. 2006; 54: 343-357https://doi.org/10.1002/glia.20400
        • Liu G.J.
        • Nagarajah R.
        • Banati R.B.
        • Bennett M.R.
        Glutamate induces directed chemotaxis of microglia.
        Eur. J. Neurosci. 2009; 29: 1108-1118https://doi.org/10.1111/j.1460-9568.2009.06659.x
        • Liverani E.
        • et al.
        LPS-induced systemic inflammation is more severe in P2Y12 null mice.
        J. Leukoc. Biol. 2014; 95: 313-323https://doi.org/10.1189/jlb.1012518
        • Lorea-Hernandez J.J.
        • Morales T.
        • Rivera-Angulo A.J.
        • Alcantara-Gonzalez D.
        • Pena-Ortega F.
        Microglia modulate respiratory rhythm generation and autoresuscitation.
        Glia. 2016; 64: 603-619https://doi.org/10.1002/glia.22951
        • Lynch M.
        • et al.
        Effect of acute intermittent hypoxia on motor function in individuals with chronic spinal cord injury following ibuprofen pretreatment: a pilot study.
        J. Spinal Cord Med. 2017; 40: 295-303https://doi.org/10.1080/10790268.2016.1142137
        • MacFarlane P.M.
        • Satriotomo I.
        • Windelborn J.A.
        • Mitchell G.S.
        NADPH oxidase activity is necessary for acute intermittent hypoxia-induced phrenic long-term facilitation.
        J. Physiol. 2009; 587: 1931-1942https://doi.org/10.1113/jphysiol.2008.165597
        • Maezawa I.
        • Jin L.W.
        Rett syndrome microglia damage dendrites and synapses by the elevated release of glutamate.
        J. Neurosci. 2010; 30: 5346-5356https://doi.org/10.1523/JNEUROSCI.5966-09.2010
        • Maezawa I.
        • Swanberg S.
        • Harvey D.
        • LaSalle J.M.
        • Jin L.W.
        Rett syndrome astrocytes are abnormal and spread MeCP2 deficiency through gap junctions.
        J. Neurosci. 2009; 29: 5051-5061https://doi.org/10.1523/JNEUROSCI.0324-09.2009
        • Marina N.
        • et al.
        Purinergic signalling in the rostral ventro-lateral medulla controls sympathetic drive and contributes to the progression of heart failure following myocardial infarction in rats.
        Basic Res. Cardiol. 2013; 108: 317https://doi.org/10.1007/s00395-012-0317-x
        • Marina N.
        • et al.
        Brainstem hypoxia contributes to the development of hypertension in the spontaneously hypertensive rat.
        Hypertension. 2015; 65: 775-783https://doi.org/10.1161/HYPERTENSIONAHA.114.04683
        • Marina N.
        • Teschemacher A.G.
        • Kasparov S.
        • Gourine A.V.
        Glia, sympathetic activity and cardiovascular disease.
        Exp. Physiol. 2016; 101: 565-576https://doi.org/10.1113/EP085713
        • Mishra A.
        • et al.
        Astrocytes mediate neurovascular signaling to capillary pericytes but not to arterioles.
        Nat. Neurosci. 2016; 19: 1619-1627https://doi.org/10.1038/nn.4428
        • Moore C.S.
        • et al.
        P2Y12 expression and function in alternatively activated human microglia.
        Neurol. Neurophysiol. Neurosci. 2015; 2e80https://doi.org/10.1212/NXI.0000000000000080
        • Moriguchi S.
        • et al.
        Potentiation of NMDA receptor-mediated synaptic responses by microglia.
        Brain Res. Mol. Brain Res. 2003; 119: 160-169https://doi.org/10.1016/j.molbrainres.2003.09.007
        • Nakagawa T.
        • et al.
        Renal denervation prevents stroke and brain injury via attenuation of oxidative stress in hypertensive rats.
        J. Am. Heart Assoc. 2013; 2e000375https://doi.org/10.1161/JAHA.113.000375
        • Noda M.
        • Nakanishi H.
        • Nabekura J.
        • Akaike N.
        AMPA-kainate subtypes of glutamate receptor in rat cerebral microglia.
        J. Neurosci. 2000; 20: 251-258
        • Ogier M.
        • Katz D.M.
        Breathing dysfunction in Rett syndrome: understanding epigenetic regulation of the respiratory network.
        Respir. Physiol. Neurobiol. 2008; 164: 55-63https://doi.org/10.1016/j.resp.2008.04.005
        • Okabe Y.
        • et al.
        Alterations of gene expression and glutamate clearance in astrocytes derived from an MeCP2-null mouse model of Rett syndrome.
        PLoS One. 2012; 7e35354https://doi.org/10.1371/journal.pone.0035354
        • Oliveira-Sales E.B.
        • et al.
        Kidney-induced hypertension depends on superoxide signaling in the rostral ventrolateral medulla.
        Hypertension. 2010; 56: 290-296https://doi.org/10.1161/HYPERTENSIONAHA.110.150425
        • Pandit S.
        • et al.
        Enhanced astroglial GABA uptake attenuates tonic GABAA inhibition of the presympathetic hypothalamic paraventricular nucleus neurons in heart failure.
        J. Neurophysiol. 2015; 114: 914-926https://doi.org/10.1152/jn.00080.2015
        • Pascual O.
        • Ben Achour S.
        • Rostaing P.
        • Triller A.
        • Bessis A.
        Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission.
        Proc. Natl. Acad. Sci. U. S. A. 2012; 109: E197-E205https://doi.org/10.1073/pnas.1111098109
        • Paton J.F.
        A working heart-brainstem preparation of the mouse.
        J. Neurosci. Methods. 1996; 65: 63-68
        • Paxinos G.
        • Watson C.
        The Rat Brain in Stereotactic Coordinates.
        1986
        • Potapenko E.S.
        • Biancardi V.C.
        • Zhou Y.
        • Stern J.E.
        Altered astrocyte glutamate transporter regulation of hypothalamic neurosecretory neurons in heart failure rats.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012; 303: R291-R300https://doi.org/10.1152/ajpregu.00056.2012
        • Powell F.L.
        • Milsom W.K.
        • Mitchell G.S.
        Time domains of the hypoxic ventilatory response.
        Respir. Physiol. 1998; 112: 123-134https://doi.org/10.1016/S0034-5687(98)00026-7
        • Rajani V.
        • et al.
        Release of ATP by pre-Botzinger complex astrocytes contributes to the hypoxic ventilatory response via a Ca(2+)-dependent P2Y1 receptor mechanism.
        J. Physiol. 2017; https://doi.org/10.1113/JP274727
        • Rana I.
        • et al.
        Microglia activation in the hypothalamic PVN following myocardial infarction.
        Brain Res. 2010; 1326: 96-104https://doi.org/10.1016/j.brainres.2010.02.028
        • Rana I.
        • et al.
        Microglia are selectively activated in endocrine and cardiovascular control centres in streptozotocin-induced diabetic rats.
        J. Neuroendocrinol. 2014; 26: 413-425https://doi.org/10.1111/jne.12161
        • Ruchaya P.J.
        • Paton J.F.
        • Murphy D.
        • Yao S.T.
        A cardiovascular role for fractalkine and its cognate receptor, CX3CR1, in the rat nucleus of the solitary tract.
        Neuroscience. 2012; 209: 119-127https://doi.org/10.1016/j.neuroscience.2012.02.018
        • Ruchaya P.J.
        • Antunes V.R.
        • Paton J.F.
        • Murphy D.
        • Yao S.T.
        The cardiovascular actions of fractalkine/CX3CL1 in the hypothalamic paraventricular nucleus are attenuated in rats with heart failure.
        Exp. Physiol. 2014; 99: 111-122https://doi.org/10.1113/expphysiol.2013.075432
        • Shen X.Z.
        • et al.
        Microglia participate in neurogenic regulation of hypertension.
        Hypertension. 2015; 66: 309-316https://doi.org/10.1161/HYPERTENSIONAHA.115.05333
        • Shen W.
        • Nikolic L.
        • Meunier C.
        • Pfrieger F.
        • Audinat E.
        An autocrine purinergic signaling controls astrocyte-induced neuronal excitation.
        Sci. Rep. 2017; 7: 11280https://doi.org/10.1038/s41598-017-11793-x
        • Shi P.
        • et al.
        Brain microglial cytokines in neurogenic hypertension.
        Hypertension. 2010; 56: 297-303https://doi.org/10.1161/HYPERTENSIONAHA.110.150409
        • Sipe G.O.
        • et al.
        Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex.
        Nat. Commun. 2016; 7: 10905https://doi.org/10.1038/ncomms10905
        • Smith S.M.
        • Friedle S.A.
        • Watters J.J.
        Chronic intermittent hypoxia exerts CNS region-specific effects on rat microglial inflammatory and TLR4 gene expression.
        PLoS One. 2013; 8e81584https://doi.org/10.1371/journal.pone.0081584
        • Snyder B.
        • Shell B.
        • Cunningham J.T.
        • Cunningham R.L.
        Chronic intermittent hypoxia induces oxidative stress and inflammation in brain regions associated with early-stage neurodegeneration.
        Phys. Rep. 2017; 5https://doi.org/10.14814/phy2.13258
        • Soltys Z.
        • Ziaja M.
        • Pawlinski R.
        • Setkowicz Z.
        • Janeczko K.
        Morphology of reactive microglia in the injured cerebral cortex. Fractal analysis and complementary quantitative methods.
        J. Neurosci. Res. 2001; 63: 90-97https://doi.org/10.1002/1097-4547(20010101)63:1<90::aid-jnr11>3.0.co;2-9
        • Soltys Z.
        • et al.
        Quantitative morphological study of microglial cells in the ischemic rat brain using principal component analysis.
        J. Neurosci. Methods. 2005; 146: 50-60https://doi.org/10.1016/j.jneumeth.2005.01.009
        • Song X.A.
        • et al.
        Inhibition of TNF-alpha in hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by inhibiting neurohormonal excitation in spontaneously hypertensive rats.
        Toxicol. Appl. Pharmacol. 2014; 281: 101-108https://doi.org/10.1016/j.taap.2014.09.004
        • Sriramula S.
        • Xia H.
        • Xu P.
        • Lazartigues E.
        Brain-targeted angiotensin-converting enzyme 2 overexpression attenuates neurogenic hypertension by inhibiting cyclooxygenase-mediated inflammation.
        Hypertension. 2015; 65: 577-586https://doi.org/10.1161/HYPERTENSIONAHA.114.04691
        • Stellwagen D.
        • Malenka R.C.
        Synaptic scaling mediated by glial TNF-alpha.
        Nature. 2006; 440: 1054-1059https://doi.org/10.1038/nature04671
        • Stern J.E.
        • et al.
        Astrocytes contribute to angiotensin II stimulation of hypothalamic neuronal activity and sympathetic outflow.
        Hypertension. 2016; 68: 1483-1493https://doi.org/10.1161/HYPERTENSIONAHA.116.07747
        • Stokes J.A.
        • Arbogast T.E.
        • Moya E.A.
        • Fu Z.
        • Powell F.L.
        Minocycline blocks glial cell activation and ventilatory acclimatization to hypoxia.
        J. Neurophysiol. 2017; 117: 1625-1635https://doi.org/10.1152/jn.00525.2016
        • Szalay G.
        • et al.
        Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke.
        Nat. Commun. 2016; 7: 11499https://doi.org/10.1038/ncomms11499
        • Takaki J.
        • et al.
        l-glutamate released from activated microglia downregulates astrocytic l-glutamate transporter expression in neuroinflammation: the ‘collusion’ hypothesis for increased extracellular l-glutamate concentration in neuroinflammation.
        J. Neuroinflammation. 2012; 9: 275https://doi.org/10.1186/1742-2094-9-275
        • Takesue K.
        • Kishi T.
        • Hirooka Y.
        • Sunagawa K.
        Activation of microglia within paraventricular nucleus of hypothalamus is NOT involved in maintenance of established hypertension.
        J. Cardiol. 2017; 69: 84-88https://doi.org/10.1016/j.jjcc.2016.01.004
        • Takeuchi H.
        • et al.
        Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner.
        J. Biol. Chem. 2006; 281: 21362-21368https://doi.org/10.1074/jbc.M600504200
        • Tan X.
        • et al.
        The phosphoinositide-3 kinase signaling is involved in neuroinflammation in hypertensive rats.
        CNS Neurosci. Ther. 2017; 23: 350-359https://doi.org/10.1111/cns.12679
        • Taylor D.L.
        • Diemel L.T.
        • Cuzner M.L.
        • Pocock J.M.
        Activation of group II metabotropic glutamate receptors underlies microglial reactivity and neurotoxicity following stimulation with chromogranin A, a peptide up-regulated in Alzheimer's disease.
        J. Neurochem. 2002; 82: 1179-1191
        • Taylor D.L.
        • Diemel L.T.
        • Pocock J.M.
        Activation of microglial group III metabotropic glutamate receptors protects neurons against microglial neurotoxicity.
        J. Neurosci. 2003; 23: 2150-2160
        • Turlejski T.
        • Humoud I.
        • Desai R.
        • Smith K.J.
        • Marina N.
        Immunohistochemical evidence of tissue hypoxia and astrogliosis in the rostral ventrolateral medulla of spontaneously hypertensive rats.
        Brain Res. 2016; 1650: 178-183https://doi.org/10.1016/j.brainres.2016.09.012
        • Turovsky E.
        • Karagiannis A.
        • Abdala A.P.
        • Gourine A.V.
        Impaired CO2 sensitivity of astrocytes in a mouse model of Rett syndrome.
        J. Physiol. 2015; 593: 3159-3168https://doi.org/10.1113/JP270369
        • Vinit S.
        • Windelborn J.A.
        • Mitchell G.S.
        Lipopolysaccharide attenuates phrenic long-term facilitation following acute intermittent hypoxia.
        Respir. Physiol. Neurobiol. 2011; 176: 130-135https://doi.org/10.1016/j.resp.2011.02.008
        • Wake H.
        • Moorhouse A.J.
        • Jinno S.
        • Kohsaka S.
        • Nabekura J.
        Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals.
        J. Neurosci. 2009; 29: 3974-3980https://doi.org/10.1523/JNEUROSCI.4363-08.2009
        • Waki H.
        • et al.
        Junctional adhesion molecule-1 is upregulated in spontaneously hypertensive rats: evidence for a prohypertensive role within the brain stem.
        Hypertension. 2007; 49: 1321-1327https://doi.org/10.1161/HYPERTENSIONAHA.106.085589
        • Waki H.
        • Gouraud S.S.
        • Maeda M.
        • Paton J.F.
        Specific inflammatory condition in nucleus tractus solitarii of the SHR: novel insight for neurogenic hypertension?.
        Auton. Neurosci. 2008; 142: 25-31https://doi.org/10.1016/j.autneu.2008.07.003
        • Waki H.
        • et al.
        Acute reductions in blood flow restricted to the dorsomedial medulla induce a pressor response in rats.
        J. Hypertens. 2011; 29: 1536-1545https://doi.org/10.1097/HJH.0b013e3283484106
        • Waki H.
        • Gouraud S.S.
        • Maeda M.
        • Raizada M.K.
        • Paton J.F.
        Contributions of vascular inflammation in the brainstem for neurogenic hypertension.
        Respir. Physiol. Neurobiol. 2011; 178: 422-428https://doi.org/10.1016/j.resp.2011.05.004
        • Wang J.
        • et al.
        Wild-type microglia do not reverse pathology in mouse models of Rett syndrome.
        Nature. 2015; 521: E1-E4https://doi.org/10.1038/nature14444
        • Wei S.G.
        • Yu Y.
        • Zhang Z.H.
        • Felder R.B.
        Proinflammatory cytokines upregulate sympathoexcitatory mechanisms in the subfornical organ of the rat.
        Hypertension. 2015; 65: 1126-1133https://doi.org/10.1161/HYPERTENSIONAHA.114.05112
        • Wu K.L.
        • Chan S.H.
        • Chan J.Y.
        Neuroinflammation and oxidative stress in rostral ventrolateral medulla contribute to neurogenic hypertension induced by systemic inflammation.
        J. Neuroinflammation. 2012; 9: 212https://doi.org/10.1186/1742-2094-9-212
        • Xing T.
        • Pilowsky P.M.
        Acute intermittent hypoxia in rat in vivo elicits a robust increase in tonic sympathetic nerve activity that is independent of respiratory drive.
        J. Physiol. 2010; 588: 3075-3088https://doi.org/10.1113/jphysiol.2010.190454
        • Yamagata K.
        • et al.
        Faulty induction of blood-brain barrier functions by astrocytes isolated from stroke-prone spontaneously hypertensive rats.
        Clin. Exp. Pharmacol. Physiol. 1997; 24: 686-691https://doi.org/10.1111/j.1440-1681.1997.tb02113.x
        • Yu Y.
        • et al.
        Central gene transfer of interleukin-10 reduces hypothalamic inflammation and evidence of heart failure in rats after myocardial infarction.
        Circ. Res. 2007; 101: 304-312https://doi.org/10.1161/CIRCRESAHA.107.148940
        • Zoccal D.B.
        • Huidobro-Toro J.P.
        • Machado B.H.
        Chronic intermittent hypoxia augments sympatho-excitatory response to ATP but not to l-glutamate in the RVLM of rats.
        Auton. Neurosci. 2011; 165: 156-162https://doi.org/10.1016/j.autneu.2011.06.001