Research Article| Volume 216, P51-58, January 2019

Download started.


Direct neurophysiological evidence for a role of the human anterior cingulate cortex in central command

  • Martin J. Gillies
    Corresponding author at: 6th Floor, West Wing, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, UK.
    Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK

    Department of Neurosurgery, John Radcliffe Hospital, Oxford, UK
    Search for articles by this author
  • Yongzhi Huang
    Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
    Search for articles by this author
  • Jonathan A. Hyam
    Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK

    Department of Neurosurgery, John Radcliffe Hospital, Oxford, UK
    Search for articles by this author
  • Tipu Z. Aziz
    Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK

    Department of Neurosurgery, John Radcliffe Hospital, Oxford, UK

    Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
    Search for articles by this author
  • Alexander L. Green
    Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK

    Department of Neurosurgery, John Radcliffe Hospital, Oxford, UK

    Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
    Search for articles by this author
Published:September 14, 2018DOI:



      The role of the anterior cingulate cortex (ACC) is still controversial. The ACC has been implicated in such diverse functions as cognition, arousal and emotion in addition to motor and autonomic control. Therefore the ACC is the ideal candidate to orchestrate cardiovascular performance in anticipation of perceived skeletal activity. The aim of this experiment was to investigate whether the ACC forms part of the neural network of central command whereby cardiovascular performance is governed by a top-down mechanism.

      Methods & results

      Direct local field potential (LFP) recordings were made using intraparenchymal electrodes in six human ACC's to measure changes in neuronal activity during performance of a motor task in which anticipation of exercise was uncoupled from skeletal activity itself. Parallel cardiovascular arousal was indexed by electrocardiographic changes in heart rate. During anticipation of exercise, ACC LFP power within the 25–60 Hz frequency band increased significantly by 21% compared to rest (from 62.7 μV2/Hz (±SE 4.94) to 76.0μV2/Hz (±SE 7.24); p = 0.004). This 25–60 Hz activity increase correlated with a simultaneous heart rate increase during anticipation (Pearson's r = 0.417, p = 0.016).


      We provide the first invasive electrophysiological evidence to support the role of the ACC in both motor preparation and the top-down control of cardiovascular function in exercise. This further implicates the ACC in the body's response to the outside world and its possible involvement in such extreme responses as emotional syncope and hyperventilation. In addition we describe the frequency at which the neuronal ACC populations perform these tasks in the human.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Autonomic Neuroscience: Basic and Clinical
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Adams N.E.
        • Sherfey J.S.
        • Kopell N.J.
        • Whittington M.A.
        • LeBeau F.E.
        Hetereogeneity in neuronal intrinsic properties: a possible mechanism for hub-like properties of the rat anterior cingulate cortex during network activity.
        eNeuro. 2017; 4
        • An X.
        • Bandler R.
        • Ongur D.
        • Price J.L.
        Prefrontal cortical projections to longitudinal columns in the midbrain periaqueductal gray in macaque monkeys.
        J. Comp. Neurol. 1998; 401: 455-479
        • Boccard S.G.J.
        • Prangnell S.J.
        • Pycroft L.
        • Cheeran B.
        • Moir L.
        • Pereira E.A.C.
        • et al.
        Long-term results of deep brain stimulation of the anterior cingulate cortex for neuropathic pain.
        World Neurosurg. 2017; 106: 625-637
        • Brinkmann L.
        • Poller H.
        • Herrmann M.J.
        • Miltner W.
        • Straube T.
        Initial and sustained brain responses to threat anticipation in blood-injection-injury phobia.
        Neuroimage Clin. 2017; 13: 320-329
        • Burns S.M.
        • Wyss J.M.
        The involvement of the anterior cingulate cortex in blood pressure control.
        Brain Res. 1985; 340: 71-77
        • Chefer S.I.
        • Talan M.I.
        • Engel B.T.
        Central neural correlates of learned heart rate control during exercise: central command demystified.
        J. Appl. Physiol. 1997; 83: 1448-1453
        • Critchley H.D.
        • Corfield D.R.
        • Chandler M.P.
        • Mathias C.J.
        • Dolan R.J.
        Cerebral correlates of autonomic cardiovascular arousal: a functional neuroimaging investigation in humans.
        J. Physiol. 2000; 523: 259-270
        • Critchley H.D.
        • Mathias C.J.
        • Josephs O.
        • O'Doherty J.
        • Zanini S.
        • Dewar B.K.
        • et al.
        Human cingulate cortex and autonomic control: converging neuroimaging and clinical evidence.
        Brain. 2003; 126: 2139-2152
        • Critchley H.D.
        • Tang J.
        • Glaser D.
        • Butterworth B.
        • Dolan R.J.
        Anterior cingulate activity during error and autonomic response.
        NeuroImage. 2005; 27: 885-895
        • Dampney R.A.
        • Coleman M.J.
        • Fontes M.A.
        • Hirooka Y.
        • Horiuchi J.
        • Li Y.W.
        • et al.
        Central mechanisms underlying short- and long-term regulation of the cardiovascular system.
        Clin. Exp. Pharmacol. Physiol. 2002; 29: 261-268
        • Drijvers L.
        • Ozyurek A.
        • Jensen O.
        Hearing and seeing meaning in noise: alpha, beta, and gamma oscillations predict gestural enhancement of degraded speech comprehension.
        Hum. Brain Mapp. 2018; 39: 2075-2087
        • Franks N.P.
        General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal.
        Nat. Rev. Neurosci. 2008; 9: 370-386
        • Frith C.D.
        • Allen H.A.
        The skin conductance orienting response as an index of attention.
        Biol. Psychol. 1983; 17: 27-39
        • Gentil A.F.
        • Eskandar E.N.
        • Marci C.D.
        • Evans K.C.
        • Dougherty D.D.
        Physiological responses to brain stimulation during limbic surgery: further evidence of anterior cingulate modulation of autonomic arousal.
        Biol. Psychiatry. 2009; 66: 695-701
        • Gianaros P.J.
        • Onyewuenyi I.C.
        • Sheu L.K.
        • Christie I.C.
        • Critchley H.D.
        Brain systems for baroreflex suppression during stress in humans.
        Hum. Brain Mapp. 2012; 33: 1700-1716
        • Gladwin T.E.
        • Hashemi M.M.
        • van Ast V.
        • Roelofs K.
        Ready and waiting: freezing as active action preparation under threat.
        Neurosci. Lett. 2016; 619: 182-188
        • Green A.L.
        • Wang S.
        • Purvis S.
        • Owen S.L.
        • Bain P.G.
        • Stein J.F.
        • et al.
        Identifying cardiorespiratory neurocircuitry involved in central command during exercise in humans.
        J. Physiol. 2007; 578: 605-612
        • Green A.L.
        • Wang S.
        • Stein J.F.
        • Pereira E.A.
        • Kringelbach M.L.
        • Liu X.
        • et al.
        Neural signatures in patients with neuropathic pain.
        Neurology. 2009; 72: 569-571
        • Inanaga K.
        Frontal midline theta rhythm and mental activity.
        Psychiatry Clin. Neurosci. 1998; 52: 555-566
        • Ishii R.
        • Shinosaki K.
        • Ukai S.
        • Inouye T.
        • Ishihara T.
        • Yoshimine T.
        • et al.
        Medial prefrontal cortex generates frontal midline theta rhythm.
        Neuroreport. 1999; 10: 675-679
        • Jennings J.R.
        • Sheu L.K.
        • Kuan D.C.
        • Manuck S.B.
        • Gianaros P.J.
        Resting state connectivity of the medial prefrontal cortex covaries with individual differences in high-frequency heart rate variability.
        Psychophysiology. 2016; 53: 444-454
        • Kaada B.R.
        Somato-motor, autonomic and electrocorticographic responses to electrical stimulation of rhinencephalic and other structures in primates, cat, and dog; a study of responses from the limbic, subcallosal, orbito-insular, piriform and temporal cortex, hippocampus-fornix and amygdala.
        Acta Physiol. Scand. Suppl. 1951; 24: 1-262
        • Kaada B.R.
        • Pribram K.H.
        • Epstein J.A.
        Respiratory and vascular responses in monkeys from temporal pole, insula, orbital surface and cingulate gyrus; a preliminary report.
        J. Neurophysiol. 1949; 12: 347-356
        • King A.B.
        • Menon R.S.
        • Hachinski V.
        • Cechetto D.F.
        Human forebrain activation by visceral stimuli.
        J. Comp. Neurol. 1999; 413: 572-582
        • Krogh A.
        • Lindhard J.
        The regulation of respiration and circulation during the initial stages of muscular work.
        J. Physiol. 1913; 47: 112-136
        • Laberge D.
        Thalamic and cortical mechanisms of attention suggested by recent positron emission tomographic experiments.
        J. Cogn. Neurosci. 1990; 2: 358-372
        • Lempka S.F.
        • McIntyre C.C.
        Theoretical analysis of the local field potential in deep brain stimulation applications.
        PLoS One. 2013; 8e59839
        • Maihofner C.
        • Seifert F.
        • Decol R.
        Activation of central sympathetic networks during innocuous and noxious somatosensory stimulation.
        NeuroImage. 2011; 55: 216-224
        • Matthews S.C.
        • Paulus M.P.
        • Simmons A.N.
        • Nelesen R.A.
        • Dimsdale J.E.
        Functional subdivisions within anterior cingulate cortex and their relationship to autonomic nervous system function.
        NeuroImage. 2004; 22: 1151-1156
        • McCormick D.A.
        • Bal T.
        Sleep and arousal: thalamocortical mechanisms.
        Annu. Rev. Neurosci. 1997; 20: 185-215
        • Mobbs D.
        • Marchant J.L.
        • Hassabis D.
        • Seymour B.
        • Tan G.
        • Gray M.
        • et al.
        From threat to fear: the neural organization of defensive fear systems in humans.
        J. Neurosci. 2009; 29: 12236-12243
        • Murtha S.
        • Chertkow H.
        • Beauregard M.
        • Dixon R.
        • Evans A.
        Anticipation causes increased blood flow to the anterior cingulate cortex.
        Hum. Brain Mapp. 1996; 4: 103-112
        • Ongur D.
        • An X.
        • Price J.L.
        Prefrontal cortical projections to the hypothalamus in macaque monkeys.
        J. Comp. Neurol. 1998; 401: 480-505
        • Pan J.
        • Tompkins W.J.
        A real-time QRS detection algorithm.
        IEEE Trans. Biomed. Eng. 1985; 32: 230-236
        • van Pelt S.
        • Heil L.
        • Kwisthout J.
        • Ondobaka S.
        • van Rooij I.
        • Bekkering H.
        Beta- and gamma-band activity reflect predictive coding in the processing of causal events.
        Soc. Cogn. Affect. Neurosci. 2016; 11: 973-980
        • Peyron R.
        • Laurent B.
        • Garcia-Larrea L.
        Functional imaging of brain responses to pain. A review and meta-analysis (2000).
        Neurophysiol. Clin. 2000; 30: 263-288
        • Pool J.L.
        • Ransohoff J.
        Autonomic effects on stimulating rostral portion of cingulate gyri in man.
        J. Neurophysiol. 1949; 12: 385-392
        • Posner M.I.
        Seeing the mind.
        Science. 1993; 262: 673-674
        • Posner M.I.
        • Petersen S.E.
        • Fox P.T.
        • Raichle M.E.
        Localization of cognitive operations in the human brain.
        Science. 1988; 240: 1627-1631
        • Rudebeck P.H.
        • Putnam P.T.
        • Daniels T.E.
        • Yang T.
        • Mitz A.R.
        • Rhodes S.E.
        • et al.
        A role for primate subgenual cingulate cortex in sustaining autonomic arousal.
        Proc. Natl. Acad. Sci. U. S. A. 2014; 111: 5391-5396
        • Seeber M.
        • Scherer R.
        • Wagner J.
        • Solis-Escalante T.
        • Muller-Putz G.R.
        High and low gamma EEG oscillations in central sensorimotor areas are conversely modulated during the human gait cycle.
        NeuroImage. 2015; 112: 318-326
        • Seifert F.
        • Schuberth N.
        • De Col R.
        • Peltz E.
        • Nickel F.T.
        • Maihofner C.
        Brain activity during sympathetic response in anticipation and experience of pain.
        Hum. Brain Mapp. 2013; 34: 1768-1782
        • Sequeira H.
        • Ba-M'Hamed S.
        Pyramidal control of heart rate and arterial pressure in cats.
        Arch. Ital. Biol. 1999; 137: 47-62
        • Shenhav A.
        • Cohen J.D.
        • Botvinick M.M.
        Dorsal anterior cingulate cortex and the value of control.
        Nat. Neurosci. 2016; 19: 1286-1291
        • Smith S.M.
        • Jenkinson M.
        • Woolrich M.W.
        • Beckmann C.F.
        • Behrens T.E.
        • Johansen-Berg H.
        • et al.
        Advances in functional and structural MR image analysis and implementation as FSL.
        NeuroImage. 2004; 23: S208-S219
        • Steriade M.
        • McCormick D.A.
        • Sejnowski T.J.
        Thalamocortical oscillations in the sleeping and aroused brain.
        Science. 1993; 262: 679-685
        • Thornton J.M.
        • Guz A.
        • Murphy K.
        • Griffith A.R.
        • Pedersen D.L.
        • Kardos A.
        • et al.
        Identification of higher brain centres that may encode the cardiorespiratory response to exercise in humans.
        J. Physiol. 2001; 533: 823-836
        • Touj S.
        • Houle S.
        • Ramla D.
        • Jeffrey-Gauthier R.
        • Hotta H.
        • Bronchti G.
        • et al.
        Sympathetic regulation and anterior cingulate cortex volume are altered in a rat model of chronic back pain.
        Neuroscience. 2017; 352: 9-18
        • Weiss A.R.
        • Gillies M.J.
        • Philiastides M.G.
        • Apps M.A.
        • Whittington M.A.
        • FitzGerald J.J.
        • Boccard S.G.
        • Aziz T.Z.
        • Green A.L.
        Dorsal anterior cingulate cortices differentially lateralize prediction errors and outcome valence in a decision-making task.
        Front. Hum. Neurosci. 2018; 12: 203
        • Williamson J.W.
        • McColl R.
        • Mathews D.
        • Mitchell J.H.
        • Raven P.B.
        • Morgan W.P.
        Hypnotic manipulation of effort sense during dynamic exercise: cardiovascular responses and brain activation.
        J. Appl. Physiol. 2001; 90: 1392-1399
        • Williamson J.W.
        • McColl R.
        • Mathews D.
        • Mitchell J.H.
        • Raven P.B.
        • Morgan W.P.
        Brain activation by central command during actual and imagined handgrip under hypnosis.
        J. Appl. Physiol. 2002; 92: 1317-1324
        • Williamson J.W.
        • McColl R.
        • Mathews D.
        Evidence for central command activation of the human insular cortex during exercise.
        J. Appl. Physiol. 2003; 94: 1726-1734
        • Williamson J.W.
        • Fadel P.J.
        • Mitchell J.H.
        New insights into central cardiovascular control during exercise in humans: a central command update.
        Exp. Physiol. 2006; 91: 51-58
        • Womelsdorf T.
        • Johnston K.
        • Vinck M.
        • Everling S.
        Theta-activity in anterior cingulate cortex predicts task rules and their adjustments following errors.
        Proc. Natl. Acad. Sci. U. S. A. 2010; 107: 5248-5253
        • Woolrich M.W.
        • Jbabdi S.
        • Patenaude B.
        • Chappell M.
        • Makni S.
        • Behrens T.
        • et al.
        Bayesian analysis of neuroimaging data in FSL.
        NeuroImage. 2009; 45: S173-S186
        • Zahn T.P.
        • Grafman J.
        • Tranel D.
        Frontal lobe lesions and electrodermal activity: effects of significance.
        Neuropsychologia. 1999; 37: 1227-1241