Cardiac and behavioral effects of social isolation and experimental manipulation of autonomic balance


      • Depression and social isolation interact to influence cardiac function.
      • Animal models are a useful tool to study these interactions.
      • Autonomic function and behavior were studied in a novel paradigm in prairie voles.
      • Both social isolation and autonomic imbalance contribute to depression.


      Improved understanding of how depression and social isolation interact to increase cardiac morbidity and mortality will improve public health. This experiment evaluated the effect of pharmacological autonomic blockade on cardiac and behavioral reactivity following social isolation in prairie voles. Experiment 1 validated the dose and time course of pharmacological autonomic antagonism of peripheral β-adrenergic (atenolol) and muscarinic cholinergic receptors (atropine methyl nitrate), and Experiment 2 used a novel protocol to investigate behavioral responses in the tail suspension test during pharmacological autonomic blockade as a function of social isolation (vs. paired control). Prairie voles isolated for 4 weeks (vs. paired) displayed significantly elevated heart rate and reduced heart rate variability. Autonomic receptor antagonism by atenolol led to exaggerated reductions in heart rate and standard deviation of normal-to-normal intervals, and lower amplitude of respiratory sinus arrhythmia in the isolated group (vs. paired). Administration of atropine led to an attenuated increase in heart rate in the isolated group (vs. paired), and similar near-zero levels of respiratory sinus arrhythmia amplitude in both groups. During the tail suspension test, isolated animals (vs. paired) displayed significantly greater immobility. In paired animals, atenolol administration did not influence immobility; atropine administration increased the duration of immobility (vs. vehicle). In isolated animals, atenolol administration increased the duration of immobility; atropine did not influence immobility duration (vs. vehicle). The current study contributes to our understanding of differential effects of social isolation and autonomic imbalance on cardiac and behavioral reactivity.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Autonomic Neuroscience: Basic and Clinical
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Barton D.A.
        • Dawood T.
        • Lambert E.A.
        • Esler M.D.
        • Haikerwal D.
        • Brenchley C.
        • Socratous F.
        • Kaye D.M.
        • Schlaich M.P.
        • Hickie I.
        • Lambert G.W.
        Sympathetic activity in major depressive disorder: identifying those at increased cardiac risk?.
        J. Hypertens. 2007; 25: 2117-2124
        • Bosch O.J.
        • Nair H.P.
        • Ahern T.H.
        • Neumann I.D.
        • Young L.J.
        The CRF system mediates increased passive stress-coping behavior following the loss of a bonded partner in a monogamous rodent.
        Neuropsychopharmacology. 2009; 34: 1406-1415
        • Byrne E.A.
        • Fleg J.L.
        • Vaitkevicius P.V.
        • Wright J.
        • Porges S.W.
        Role of aerobic capacity and body mass index in the age-associated decline in heart rate variability.
        J. Appl. Physiol. 1996; 81: 743-750
        • Cacioppo J.T.
        • Hughes M.E.
        • Waite L.J.
        • Hawkley L.C.
        • Thisted R.A.
        Loneliness as a specific risk factor for depressive symptoms: cross-sectional and longitudinal analyses.
        Psychol. Aging. 2006; 21: 140-151
        • Cacioppo S.
        • Grippo A.J.
        • London S.
        • Goossens L.
        • Cacioppo J.T.
        Loneliness: clinical import and interventions.
        Perspect. Psychol. Sci. 2015; 10: 238-249
        • Carnevali L.
        • Montano N.
        • Statello R.
        • Sgoifo A.
        Rodent models of depression-cardiovascular comorbidity: bridging the known to the new.
        Neurosci. Biobehav. Rev. 2017; 76: 144
        • Carney R.M.
        • Freedland K.E.
        Depression, mortality, and medical morbidity in patients with coronary heart disease.
        Biol. Psychiatry. 2003; 54: 241-247
        • Carney R.M.
        • Blumenthal J.A.
        • Stein P.K.
        • Watkins L.
        • Catellier D.
        • Berkman L.F.
        • Czajkowski S.M.
        • O'Connor C.
        • Stone P.H.
        • Freedland K.E.
        Depression, heart rate variability, and acute myocardial infarction.
        Circulation. 2001; 104: 2024-2028
        • Carney R.M.
        • Howells W.B.
        • Blumenthal J.A.
        • Freedland K.E.
        • Stein P.K.
        • Berkman L.F.
        • Watkins L.L.
        • Czajkowski S.M.
        • Steinmeyer B.
        • Hayano J.
        • Domitrovich P.P.
        • Burg M.M.
        • Jaffe A.S.
        Heart rate turbulence, depression, and survival after acute myocardial infarction.
        Psychosom. Med. 2007; 69: 4-9
        • Carter C.S.
        • Keverne E.B.
        The neurobiology of social affiliation and pair bonding.
        Horm. Brain Behav. 2002; 1: 299-337
        • Carter C.S.
        • Boone E.M.
        • Grippo A.J.
        • Ruscio M.G.
        • Bales K.L.
        The endocrinology of social relationships.
        in: Ellison P.T. Gray P.B. Endocrinology of Social Relationships. Harvard University Press, Cambridge, MA2009: 121-127
        • Cryan J.F.
        • Mombereau C.
        • Vassout A.
        The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice.
        Neurosci. Biobehav. Rev. 2005; 29: 571-625
        • Eng P.M.
        • Rimm E.B.
        • Fitzmaurice G.
        • Kawachi I.
        Social ties and change in social ties in relation to subsequent total and cause-specific mortality and coronary heart disease incidence in men.
        Am. J. Epidemiol. 2002; 155: 700-709
        • Ferguson A.V.
        Circumventricular organs: integrators of circulating signals controlling hydration, energy balance, and immune function.
        in: De Luca L.A. Menani J.V. Johnson A.K. Neurobiology of Body Fluid Homeostatis: Transduction and Integration (pp. Chapter 2). CRC Press/Taylor & Francis, Boca Raton, FL2014
        • Fountain S.B.
        • Rowan J.D.
        • Wollan M.O.
        Central cholinergic involvement in sequential behavior: impairments of performance by atropine in a serial multiple choice task for rats.
        Neurobiol. Learn. Mem. 2013; 106: 118-126
        • Glassman A.H.
        Depression and cardiovascular comorbidity.
        Dialogues Clin. Neurosci. 2007; 9: 9-17
        • Grippo A.J.
        Mechanisms underlying altered mood and cardiovascular dysfunction: the value of neurobiological and behavioral research with animal models.
        Neurosci. Biobehav. Rev. 2009; 33: 171-180
        • Grippo A.J.
        The utility of animal models in understanding links between psychosocial processes and cardiovascular health.
        Soc. Personal. Psychol. Compass. 2011; 5: 164-179
        • Grippo A.J.
        • Moffitt J.A.
        • Johnson A.K.
        Cardiovascular alterations and autonomic imbalance in an experimental model of depression.
        Am. J. Phys. Regul. Integr. Comp. Phys. 2002; 282: R1333-R1341
        • Grippo A.J.
        • Lamb D.G.
        • Carter C.S.
        • Porges S.W.
        Cardiac regulation in the socially monogamous prairie vole.
        Physiol. Behav. 2007; 90: 386-393
        • Grippo A.J.
        • Lamb D.G.
        • Carter C.S.
        • Porges S.W.
        Social isolation disrupts autonomic regulation of the heart and influences negative affective behaviors.
        Biol. Psychiatry. 2007; 62: 1162-1170
        • Grippo A.J.
        • Moffitt J.A.
        • Sgoifo A.
        • Jepson A.J.
        • Bates S.L.
        • Chandler D.L.
        • McNeal N.
        • Preihs K.
        The integration of depressive behaviors and cardiac dysfunction during an operational measure of depression: investigating the role of negative social experiences in an animal model.
        Psychosom. Med. 2012; 74: 612-619
        • Hawkley L.C.
        • Cacioppo J.T.
        Loneliness and pathways to disease.
        Brain Behav. Immun. 2003; 17: S98-S105
        • Hawkley L.C.
        • Capitanio J.P.
        Perceived social isolation, evolutionary fitness and health outcomes: a lifespan approach.
        Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015; 370: 1-12
        • Hofer M.A.
        Cardiac and respiratory function during sudden prolonged immobility in wild rodents.
        Psychosom. Med. 1970; 32: 348-633
        • Houtveen J.H.
        • Rietveld S.
        • de Geus E.J.
        Contribution of tonic vagal modulation of heart rate, central respiratory drive, respiratory depth, and respiratory frequency to respiratory sinus arrhythmia during mental stress and physical exercise.
        Psychophysiology. 2002; 39: 427-436
        • Hu M.X.
        • Penninx B.W.J.H.
        • De Geus E.J.C.
        • Lamers F.
        • Kuan D.C.
        • Wright A.G.C.
        • Marsland A.L.
        • Muldoon M.F.
        • Manuck S.B.
        • Gianaros P.J.
        Associations of immunometabolic risk factors with symptoms of depression and anxiety: the role of cardiac vagal activity.
        Brain Behav. Immun. 2018; (in press)
        • Hughes J.W.
        • Stoney C.M.
        Depressed mood is related to high-frequency heart rate variability during stressors.
        Psychosom. Med. 2000; 62: 796-803
        • Ishii K.
        • Kuwahara M.
        • Tsubone H.
        • Sugano S.
        Autonomic nervous function in mice and voles (Microtus arvalis): investigation by power spectral analysis of heart rate variability.
        Lab. Anim. 1996; 30: 359-364
        • Kayano H.
        • Koba S.
        • Matsui T.
        • Fukuoka H.
        • Kaneko K.
        • Shoji M.
        • Toshida T.
        • Watanabe N.
        • Geshi E.
        • Kobayashi Y.
        Impact of depression on masked hypertension and variability in home blood pressure in treated hypertensive patients.
        Hypertens. Res. 2015; 38: 751-757
        • Kiecolt-Glaser J.K.
        • Wilson S.J.
        Lovesick: how couples' relationships influence health.
        Annu. Rev. Clin. Psychol. 2017; 13: 421-443
        • Lichtman J.H.
        • Bigger Jr., J.T.
        • Blumenthal J.A.
        • Frasure-Smith N.
        • Kaufmann P.G.
        • Lespérance F.
        • Mark D.B.
        • Sheps D.
        • Taylor C.B.
        • Froelicher E.S.
        Depression and coronary heart disease: recommendations for screening, referral, and treatment. A science advisory from the American Heart Association Prevention Committee of the Council on Cardiovascular Nursing, Council on Clinical Cardiology, Council on Epidemiology and Prevention, and Interdisciplinary Council on Quality of Care and Outcomes Research.
        Circulation. 2008; 118: 1-8
        • Lichtman J.H.
        • Froelicher E.S.
        • Blumenthal J.A.
        • Carney R.M.
        • Doering L.V.
        • Frasure-Smith N.
        • Freedland K.E.
        • Jaffe A.S.
        • Leifheit-Limson E.C.
        • Sheps D.S.
        • Vaccarino V.
        • Wulsin L.
        Depression as a risk factor for poor prognosis among patients with acute coronary syndrome: systematic review and recommendations. A scientific statement from the American Heart Association.
        Circulation. 2014; 129: 1350-1369
        • Lippi G.
        • Montagnana M.
        • Favaloro E.
        • Franchini M.
        Mental depression and cardiovascular disease: a multifaceted, bidirectional association.
        Semin. Thromb. Hemost. 2009; 35: 325-336
        • Lovallo W.R.
        Cardiovascular reactivity: mechanisms and pathways to cardiovascular disease.
        Int. J. Psychophysiol. 2005; 58: 119-132
        • McNeal N.
        • Appleton K.M.
        • Johnson A.K.
        • Scotti M.L.
        • Wardwell J.
        • Murphy R.
        • Bishop C.
        • Knecht A.
        • Grippo A.J.
        The protective effects of social bonding on behavioral and pituitary-adrenal axis reactivity to chronic mild stress in prairie voles.
        Stress. 2017; 20: 175-182
        • Musselman D.L.
        • Evans D.L.
        • Nemeroff C.B.
        The relationship of depression to cardiovascular disease.
        Arch. Gen. Psychiatry. 1998; 55: 580-592
        • Nahshoni E.
        • Aravot D.
        • Aizenberg D.
        • Sigler M.
        • Zalsman G.
        • Strasberg B.
        • Imbar S.
        • Adler E.
        • Weizman A.
        Heart rate variability in patients with major depression.
        Psychosomatics. 2004; 45: 129-134
        • Osako Y.
        • Nobuhara R.
        • Arai Y.P.
        • Tanaka K.
        • Young L.J.
        • Nishihara M.
        • Mitsui S.
        • Yuri K.
        Partner loss in monogamous rodents: modulation of pain and emotional behavior in male prairie voles.
        Psychosom. Med. 2018; 80: 62-68
        • Pedersen S.S.
        • von Känel R.
        • Tully P.J.
        • Denollet J.
        Psychosocial perspectives in cardiovascular disease.
        Eur. J. Prev. Cardiol. 2017; 24: 108-115
        • Piña I.L.
        • De Palo K.E.
        • Ventura H.O.
        Psychopharmacology and cardiovascular disease.
        J. Am. Coll. Cardiol. 2018; 71: 2346-2359
        • Pitzalis M.V.
        • Iacoviello M.
        • Todarello O.
        • Fioretti A.
        • Guida P.
        • Massari F.
        • Mastropasqua F.
        • Russo G.D.
        • Rizzon P.
        Depression but not anxiety influences the autonomic control of heart rate after myocardial infarction.
        Am. Heart J. 2001; 141: 765-771
      1. Porges SW. (1985). Method and apparatus for evaluating rhythmic oscillations in aperiodic physiological response systems. Patent Number 4,510,944:April 16.

        • Porges S.W.
        The polyvagal theory: phylogenetic substrates of a social nervous system.
        Int. J. Psychophysiol. 2001; 42: 123-146
        • Porges S.W.
        The polyvagal perspective.
        Biol. Psychol. 2007; 74: 116-143
        • Porges S.W.
        • Bohrer R.E.
        Analyses of periodic processes in psychophysiological research.
        in: Cacioppo J.T. Tassinary L.G. Principles of Psychophysiology: Physical, Social, and Inferential Elements. Cambridge University Press, New York1990: 708-753
        • Pradhan S.
        • Roth T.
        Comparative behavioral effects of several anticholinergic agents in rats.
        Psychopharmacology. 1968; 12: 358-366
        • Raboin S.J.
        • Gulley S.
        • Henley S.C.
        • Chan W.-C.
        • Esdaile A.R.
        • Sayegh A.I.
        Atropine methyl nitrate increases myenteric but not dorsal vagal complex Fos-like immunoreactivity in the rat.
        Physiol. Behav. 2006; 88: 448-452
        • Ramsay S.
        • Ebrahim S.
        • Whincup P.
        • Papacosta O.
        • Morris R.
        • Lennon L.
        • Wannamethee S.G.
        Social engagement and the risk of cardiovascular disease mortality: results of a prospective population based study of older men.
        Ann. Epidemiol. 2008; 18: 476-483
        • Rechlin T.
        • Weis M.
        • Spitzer A.
        • Kaschka W.P.
        Are affective disorders associated with alterations of heart rate variability?.
        J. Affect. Disord. 1994; 32: 271-275
        • Rozanski A.
        • Blumenthal J.A.
        • Davidson K.W.
        • Saab P.G.
        • Kubzansky L.
        The epidemiology, pathophysiology, and management of psychosocial risk factors in cardiac practice: the emerging field of behavioral cardiology.
        J. Am. Coll. Cardiol. 2005; 45: 637-651
        • Rutledge T.
        • Reis S.E.
        • Olson M.
        • Owens J.
        • Kelsey S.F.
        • Pepine C.J.
        • Mankad S.
        • Rogers W.J.
        • Bairey Merz C.N.
        • Sopko G.
        • Cornell C.E.
        • Sharaf B.
        • Matthews K.A.
        Social networks are associated with lower mortality rates among women with suspected coronary disease: the National Heart, Lung, and Blood Institute sponsored Women's Ischemia Syndrome Evaluation study.
        Psychosom. Med. 2004; 66: 882-888
        • Sgoifo A.
        • Stilli D.
        • Medici D.
        • Gallo P.
        • Aimi B.
        • Musso E.
        Electrode positioning for reliable telemetry ECG recordings during social stress in unrestrained rats.
        Physiol. Behav. 1996; 60: 1397-1401
        • Sgoifo A.
        • Carnevali L.
        • Pico-Alfonso M.A.
        • Amore M.
        Autonomic dysfunction and heart rate variability in depression.
        Stress. 2015; 18: 343-352
        • Sheffield D.
        • Krittayaphong R.
        • Cascio W.E.
        • Light K.C.
        • Golden R.N.
        • Finkel J.B.
        • Glekas G.
        • Koch G.G.
        • Sheps D.S.
        Heart rate variability at rest and during mental stress in patients with coronary artery disease: differences in patients with high and low depression scores.
        Int. J. Behav. Med. 1998; 5: 31-47
        • Shively C.A.
        • Day S.M.
        Social inequalities in health in nonhuman primates.
        Neurobiol. Stress. 2015; 1: 156-163
        • Siever L.J.
        • Davis K.L.
        Overview: toward a dysregulation hypothesis of depression.
        Am. J. Psychiatr. 1985; 142: 1017-1031
        • Steptoe A.
        • Shankar A.
        • Demakakos P.
        • Wardle J.
        Social isolation, loneliness, and all-cause mortality in older men and women.
        Proc. Natl. Acad. Sci. 2013; 110: 5797-5801
        • Steru L.
        • Chermat R.
        • Thierry B.
        • Simon P.
        The tail suspension test: a new method for screening antidepressants in mice.
        Psychopharmacology. 1985; 85: 367-370
        • Sun P.
        • Smith A.S.
        • Lei K.
        • Liu Y.
        • Wang Z.
        Breaking bonds in male prairie vole: long-term effects on emotional and social behavior, physiology, and neurochemistry.
        Behav. Brain Res. 2014; 265: 22-31
        • Üstün T.B.
        • Ayuso-Mateos J.L.
        • Chatterji S.
        • Mathers C.
        • Murray C.J.
        Global burden of depressive disorders in the year 2000.
        Br. J. Psychiatry. 2004; 184: 386-392
        • Varty G.B.
        • Cohen-Williams M.E.
        • Hunter J.C.
        The antidepressant-like effects of neurokinin NK1 receptor antagonists in a gerbil tail suspension test.
        Behav. Pharmacol. 2003; 14: 87-95
        • Veith R.C.
        • Lewis N.
        • Linares O.A.
        • Barnes R.F.
        • Raskind M.A.
        • Villacres E.C.
        • Murburg M.M.
        • Ashleigh E.A.
        • Castillo S.
        • Peskind E.R.
        • Pascualy M.
        • Halter J.B.
        Sympathetic nervous system activity in major depression: basal and desipramine-induced alterations in plasma norepinephrine kinetics.
        Arch. Gen. Psychiatry. 1994; 51: 411-422
        • Yongue B.G.
        • McCabe P.M.
        • Porges S.W.
        • Rivera M.
        • Kelley S.L.
        • Ackles P.K.
        The effects of pharmacological manipulations that influence vagal control of the heart on heart period, heart-period variability and respiration in rats.
        Psychophysiology. 1982; 19: 426-432
        • Young K.A.
        • Gobrogge K.L.
        • Liu Y.
        • Wang Z.
        The neurobiology of pair bonding: insights from a socially monogamous rodent.
        Front. Neuroendocrinol. 2011; 32: 53-69