Advertisement

Control of the cardiovascular and respiratory systems during sleep

Published:January 30, 2019DOI:https://doi.org/10.1016/j.autneu.2019.01.007

      Abstract

      Sleep and arousal from sleep are associated with profound changes in cardiovascular and respiratory functions. Fluctuations of arterial blood pressure (ABP), heart rate (HR), and respiration occur both during non-rapid eye movement (NREM) and REM sleep and during transitions between sleep and behavioral arousal. These changes reflect complex, state-dependent interactions among several neuronal groups in the hypothalamus and brainstem. These neurons utilize the excitatory amino-acid L-glutamate or the inhibitory amino acid γ-aminobutyric acid (GABA) and are modulated in a state-dependent manner by inputs from cholinergic, monoaminergic, and hypothalamic orexin/hypocretin and melanin-concentrating hormone (MCH) neurons. These different neuronal populations mediate continuous interactions between cortical state and subcortical circuits modulating sympathetic and cardiovagal output, respiratory pattern, and chemosensitivity. Reciprocally, brainstem areas involved in these functions promote behavioral arousal in the setting of hypoxia, hypercapnia, or other stressors. Studies in rodents using optogenetic and other approaches for selective activation or inactivation of specific neuronal groups identified by their unique neurochemical markers, combined with recording of cortical activity, cardiovascular responses, and respiration, have provided new information on the brainstem mechanisms controlling arousal, wake-sleep cycle, cardiovascular and respiratory control (Luppi et al., 2017; Saper and Fuller, 2017; Scammell et al., 2017; Dampney, 2016; Del Negro et al., 2018; Guyenet, 2006; Guyenet and Abbott, 2013; Smith et al., 2013). These findings also provide further insight into the pathophysiology of sleep-related cardiovascular and respiratory disorders including sleep apnea, narcolepsy, congenital central hypoventilation syndrome, sudden infantile death syndrome, and sudden unexpected death in epilepsy.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Autonomic Neuroscience: Basic and Clinical
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abbott S.B.
        • Kanbar R.
        • Bochorishvili G.
        • Coates M.B.
        • Stornetta R.L.
        • Guyenet P.G.
        C1 neurons excite locus coeruleus and A5 noradrenergic neurons along with sympathetic outflow in rats.
        J. Physiol. 2012; 590: 2897-2915
        • Abbott S.B.
        • Coates M.B.
        • Stornetta R.L.
        • Guyenet P.G.
        Optogenetic stimulation of c1 and retrotrapezoid nucleus neurons causes sleep state-dependent cardiorespiratory stimulation and arousal in rats.
        Hypertension. 2013; 61: 835-841
        • Alam M.N.
        • McGinty D.
        • Szymusiak R.
        Neuronal discharge of preoptic/anterior hypothalamic thermosensitive neurons: relation to NREM sleep.
        Am. J. Phys. 1995; 269: R1240-R1249
        • Anaclet C.
        • Ferrari L.
        • Arrigoni E.
        • Bass C.E.
        • Saper C.B.
        • Lu J.
        • Fuller P.M.
        The GABAergic parafacial zone is a medullary slow wave sleep-promoting center.
        Nat. Neurosci. 2014; 17: 1217-1224
        • Anderson T.M.
        • Garcia III, A.J.
        • Baertsch N.A.
        • Pollak J.
        • Bloom J.C.
        • Wei A.D.
        • Rai K.G.
        • Ramirez J.M.
        A novel excitatory network for the control of breathing.
        Nature. 2016; 536: 76-80
        • Arita H.
        • Ichikawa K.
        • Sakamoto M.
        Serotonergic cells in nucleus raphe pallidus provide tonic drive to posterior cricoarytenoid motoneurons via 5-hydroxytryptamine2 receptors in cats.
        Neurosci. Lett. 1995; 197: 113-116
        • Bandler R.
        • Keay K.A.
        • Floyd N.
        • Price J.
        Central circuits mediating patterned autonomic activity during active vs. passive emotional coping.
        Brain Res. Bull. 2000; 53: 95-104
        • Barnett W.H.
        • Abdala A.P.
        • Paton J.F.
        • Rybak I.A.
        • Zoccal D.B.
        • Molkov Y.I.
        Chemoreception and neuroplasticity in respiratory circuits.
        Exp. Neurol. 2017; 287: 153-164
        • Ben-Tal A.
        • Shamailov S.S.
        • Paton J.F.
        Evaluating the physiological significance of respiratory sinus arrhythmia: looking beyond ventilation-perfusion efficiency.
        J. Physiol. 2012; 590: 1989-2008
        • Bizzi E.
        • Pompeiano O.
        • Somogyi I.
        Vestibular nuclei: activity of single neurons during natural sleep and wakefulness.
        Science. 1964; 145: 414-415
        • Bochorishvili G.
        • Nguyen T.
        • Coates M.B.
        • Viar K.E.
        • Stornetta R.L.
        • Guyenet P.G.
        The orexinergic neurons receive synaptic input from C1 cells in rats.
        J. Comp. Neurol. 2014; 522: 3834-3846
        • Boeve B.F.
        • Silber M.H.
        • Saper C.B.
        • Ferman T.J.
        • Dickson D.W.
        • Parisi J.E.
        • Benarroch E.E.
        • Ahlskog J.E.
        • Smith G.E.
        • Caselli R.C.
        • et al.
        Pathophysiology of REM sleep behaviour disorder and relevance to neurodegenerative disease.
        Brain. 2007; 130: 2770-2788
        • Boutin R.C.
        • Alsahafi Z.
        • Pagliardini S.
        Cholinergic modulation of the parafacial respiratory group.
        J. Physiol. 2017; 595: 1377-1392
        • Boychuk C.R.
        • Bateman R.J.
        • Philbin K.E.
        • Mendelowitz D.
        alpha1-adrenergic receptors facilitate inhibitory neurotransmission to cardiac vagal neurons in the nucleus ambiguus.
        Neuroscience. 2011; 193: 154-161
        • Brown S.N.
        • Chitravanshi V.C.
        • Kawabe K.
        • Sapru H.N.
        Microinjections of melanin concentrating hormone into the nucleus tractus solitarius of the rat elicit depressor and bradycardic responses.
        Neuroscience. 2007; 150: 796-806
        • Burke P.G.
        • Kanbar R.
        • Basting T.M.
        • Hodges W.M.
        • Viar K.E.
        • Stornetta R.L.
        • Guyenet P.G.
        State-dependent control of breathing by the retrotrapezoid nucleus.
        J. Physiol. 2015; 593: 2909-2926
        • Chamberlin N.L.
        Brain circuitry mediating arousal from obstructive sleep apnea.
        Curr. Opin. Neurobiol. 2013; 23: 774-779
        • Chamberlin N.L.
        • Saper C.B.
        Topographic organization of cardiovascular responses to electrical and glutamate microstimulation of the parabrachial nucleus in the rat.
        J. Comp. Neurol. 1992; 326: 245-262
        • Chamberlin N.L.
        • Saper C.B.
        Topographic organization of respiratory responses to glutamate microstimulation of the parabrachial nucleus in the rat.
        J. Neurosci. 1994; 14: 6500-6510
        • Cole R.J.
        Postural baroreflex stimuli may affect EEG arousal and sleep in humans.
        J. Appl. Physiol. 1989; 67: 2369-2375
        • Corcoran A.E.
        • Richerson G.B.
        • Harris M.B.
        Functional link between the hypocretin and serotonin systems in the neural control of breathing and central chemosensitivity.
        J. Neurophysiol. 2015; 114: 381-389
        • da Silva G.S.
        • Giusti H.
        • Benedetti M.
        • Dias M.B.
        • Gargaglioni L.H.
        • Branco L.G.
        • Glass M.L.
        Serotonergic neurons in the nucleus raphe obscurus contribute to interaction between central and peripheral ventilatory responses to hypercapnia.
        Pflugers Arch. 2011; 462: 407-418
        • Davern P.J.
        A role for the lateral parabrachial nucleus in cardiovascular function and fluid homeostasis.
        Front. Physiol. 2014; 5: 436
        • Dampney R.A.
        Functional organization of central pathways regulating the cardiovascular system.
        Physiol. Rev. 1994; 74: 323-364
        • Dampney R.A.
        Central mechanisms regulating coordinated cardiovascular and respiratory function during stress and arousal.
        Am. J. Phys. Regul. Integr. Comp. Phys. 2015; 309: R429-R443
        • Dampney R.A.
        Central neural control of the cardiovascular system: current perspectives.
        Adv. Physiol. Educ. 2016; 40: 283-296
        • Del Negro C.A.
        • Funk G.D.
        • Feldman J.L.
        Breathing matters.
        Nat. Rev. Neurosci. 2018; 19: 351-367
        • Dempsey J.A.
        • Smith C.A.
        • Przybylowski T.
        • Chenuel B.
        • Xie A.
        • Nakayama H.
        • Skatrud J.B.
        The ventilatory responsiveness to CO(2) below eupnoea as a determinant of ventilatory stability in sleep.
        J. Physiol. 2004; 560: 1-11
        • Dergacheva O.
        • Wang X.
        • Lovett-Barr M.R.
        • Jameson H.
        • Mendelowitz D.
        The lateral paragigantocellular nucleus modulates parasympathetic cardiac neurons: a mechanism for rapid eye movement sleep-dependent changes in heart rate.
        J. Neurophysiol. 2010; 104: 685-694
        • Doi A.
        • Ramirez J.M.
        State-dependent interactions between excitatory neuromodulators in the neuronal control of breathing.
        J. Neurosci. 2010; 30: 8251-8262
        • Douglas N.J.
        • White D.P.
        • Weil J.V.
        • Pickett C.K.
        • Martin R.J.
        • Hudgel D.W.
        • Zwillich C.W.
        Hypoxic ventilatory response decreases during sleep in normal men.
        Am. Rev. Respir. Dis. 1982; 125: 286-289
        • Douglas N.J.
        • White D.P.
        • Weil J.V.
        • Pickett C.K.
        • Zwillich C.W.
        Hypercapnic ventilatory response in sleeping adults.
        Am. Rev. Respir. Dis. 1982; 126: 758-762
        • Fink A.M.
        • Dean C.
        • Piano M.R.
        • Carley D.W.
        The pedunculopontine tegmentum controls renal sympathetic nerve activity and cardiorespiratory activities in nembutal-anesthetized rats.
        PLoS One. 2017; 12e0187956
        • Futuro-Neto H.A.
        • Coote J.H.
        Desynchronized sleep-like pattern of sympathetic activity elicited by electrical stimulation of sites in the brainstem.
        Brain Res. 1982; 252: 269-276
        • Gourine A.V.
        • Machhada A.
        • Trapp S.
        • Spyer K.M.
        Cardiac vagal preganglionic neurones: an update.
        Auton. Neurosci. 2016; 199: 24-28
        • Grimaldi D.
        • Calandra-Buonaura G.
        • Provini F.
        • Agati P.
        • Pierangeli G.
        • Franceschini C.
        • Barletta G.
        • Plazzi G.
        • Montagna P.
        • Cortelli P.
        Abnormal sleep-cardiovascular system interaction in narcolepsy with cataplexy: effects of hypocretin deficiency in humans.
        Sleep. 2012; 35: 519-528
        • Grimaldi D.
        • Silvani A.
        • Benarroch E.E.
        • Cortelli P.
        Orexin/hypocretin system and autonomic control: new insights and clinical correlations.
        Neurology. 2014; 82: 271-278
        • Guyenet P.G.
        Regulation of breathing and autonomic outflows by chemoreceptors.
        Compr Physiol. 2014; 4: 1511-1562
        • Guyenet P.G.
        The sympathetic control of blood pressure.
        Nat. Rev. Neurosci. 2006; 7: 335-346
        • Guyenet P.G.
        • Abbott S.B.
        Chemoreception and asphyxia-induced arousal.
        Respir. Physiol. Neurobiol. 2013; 188: 333-343
        • Guyenet P.G.
        • Bayliss D.A.
        Neural Control of Breathing and CO2 Homeostasis.
        Neuron. 2015; 87: 946-961
        • Guyenet P.G.
        • Bayliss D.A.
        • Stornetta R.L.
        • Kanbar R.
        • Shi Y.
        • Holloway B.B.
        • Souza G.
        • Basting T.M.
        • Abbott S.B.G.
        • Wenker I.C.
        Interdependent feedback regulation of breathing by the carotid bodies and the retrotrapezoid nucleus.
        J. Physiol. 2017;
        • Hasegawa E.
        • Yanagisawa M.
        • Sakurai T.
        • Mieda M.
        Orexin neurons suppress narcolepsy via 2 distinct efferent pathways.
        J. Clin. Invest. 2014; 124: 604-616
        • Hayward L.F.
        Midbrain modulation of the cardiac baroreflex involves excitation of lateral parabrachial neurons in the rat.
        Brain Res. 2007; 1145: 117-127
        • Hayward L.F.
        • Felder R.B.
        Lateral parabrachial nucleus modulates baroreflex regulation of sympathetic nerve activity.
        Am. J. Phys. 1998; 274: R1274-R1282
        • Herbert H.
        • Moga M.M.
        • Saper C.B.
        Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat.
        J. Comp. Neurol. 1990; 293: 540-580
        • Hobson J.A.
        • Pace-Schott E.F.
        The cognitive neuroscience of sleep: neuronal systems, consciousness and learning.
        Nat. Rev. Neurosci. 2002; 3: 679-693
        • Hodges M.R.
        • Richerson G.B.
        The role of medullary serotonin (5-HT) neurons in respiratory control: contributions to eupneic ventilation, CO2 chemoreception, and thermoregulation.
        J. Appl. Physiol. 2010; 108: 1425-1432
        • Horowitz S.S.
        • Blanchard J.
        • Morin L.P.
        Medial vestibular connections with the hypocretin (orexin) system.
        J. Comp. Neurol. 2005; 487: 127-146
        • Jego S.
        • Glasgow S.D.
        • Herrera C.G.
        • Ekstrand M.
        • Reed S.J.
        • Boyce R.
        • Friedman J.
        • Burdakov D.
        • Adamantidis A.R.
        Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus.
        Nat. Neurosci. 2013; 16: 1637-1643
        • Kaur S.
        • Pedersen N.P.
        • Yokota S.
        • Hur E.E.
        • Fuller P.M.
        • Lazarus M.
        • Chamberlin N.L.
        • Saper C.B.
        Glutamatergic signaling from the parabrachial nucleus plays a critical role in hypercapnic arousal.
        J. Neurosci. 2013; 33: 7627-7640
        • Kesler B.
        • Anand A.
        • Launois S.H.
        • Weiss J.W.
        Drug-induced arterial pressure elevation is associated with arousal from NREM sleep in normal volunteers.
        J. Appl. Physiol. 1999; 87: 897-901
        • Konadhode R.R.
        • Pelluru D.
        • Blanco-Centurion C.
        • Zayachkivsky A.
        • Liu M.
        • Uhde T.
        • Glen Jr., W.B.
        • van den Pol A.N.
        • Mulholland P.J.
        • Shiromani P.J.
        Optogenetic stimulation of MCH neurons increases sleep.
        J. Neurosci. 2013; 33: 10257-10263
        • Kroeger D.
        • Ferrari L.L.
        • Petit G.
        • Mahoney C.E.
        • Fuller P.M.
        • Arrigoni E.
        • Scammell T.E.
        Cholinergic, glutamatergic, and GABAergic neurons of the pedunculopontine tegmental nucleus have distinct effects on sleep/wake behavior in mice.
        J. Neurosci. 2017; 37: 1352-1366
        • Kroeger D.
        • Absi G.
        • Gagliardi C.
        • Bandaru S.S.
        • Madara J.C.
        • Ferrari L.L.
        • Arrigoni E.
        • Munzberg H.
        • Scammell T.E.
        • Saper C.B.
        • et al.
        Galanin neurons in the ventrolateral preoptic area promote sleep and heat loss in mice.
        Nat. Commun. 2018; 9: 4129
        • Kuwaki T.
        • Zhang W.
        Orexin neurons as arousal-associated modulators of central cardiorespiratory regulation.
        Respir. Physiol. Neurobiol. 2010; 174: 43-54
        • Lemes E.V.
        • Aiko S.
        • Orbem C.B.
        • Formentin C.
        • Bassi M.
        • Colombari E.
        • Zoccal D.B.
        Long-term facilitation of expiratory and sympathetic activities following acute intermittent hypoxia in rats.
        Acta Physiol (Oxford). 2016; 217: 254-266
        • Li Q.
        • Song G.
        Afferent projection to the retrotrapezoid nucleus from respiratory related structures in the brainstem of rabbit--a retrograde CB-HRP tracing study.
        Sheng Li Xue Bao. 2001; 53: 401-404
        • Li N.
        • Nattie E.
        • Li A.
        The role of melanin concentrating hormone (MCH) in the central chemoreflex: a knockdown study by siRNA in the lateral hypothalamus in rats.
        PLoS One. 2014; 9e103585
        • Lu J.
        • Sherman D.
        • Devor M.
        • Saper C.B.
        A putative flip-flop switch for control of REM sleep.
        Nature. 2006; 441: 589-594
        • Luppi P.H.
        • Clement O.
        • Fort P.
        Paradoxical (REM) sleep genesis by the brainstem is under hypothalamic control.
        Curr. Opin. Neurobiol. 2013; 23: 786-792
        • Luppi P.H.
        • Clement O.
        • Valencia Garcia S.
        • Brischoux F.
        • Fort P.
        New aspects in the pathophysiology of rapid eye movement sleep behavior disorder: the potential role of glutamate, gamma-aminobutyric acid, and glycine.
        Sleep Med. 2013; 14: 714-718
        • Luppi P.H.
        • Peyron C.
        • Fort P.
        Not a single but multiple populations of GABAergic neurons control sleep.
        Sleep Med. Rev. 2017; 32: 85-94
        • Mandel D.A.
        • Schreihofer A.M.
        Central respiratory modulation of barosensitive neurones in rat caudal ventrolateral medulla.
        J. Physiol. 2006; 572: 881-896
        • McAllen R.M.
        • Spyer K.M.
        Two types of vagal preganglionic motoneurones projecting to the heart and lungs.
        J. Physiol. 1978; 282: 353-364
        • McCall R.B.
        • Clement M.E.
        Identification of serotonergic and sympathetic neurons in medullary raphe nuclei.
        Brain Res. 1989; 477: 172-182
        • Mezzanotte W.S.
        • Tangel D.J.
        • White D.P.
        Influence of sleep onset on upper-airway muscle activity in apnea patients versus normal controls.
        Am. J. Respir. Crit. Care Med. 1996; 153: 1880-1887
        • Malheiros-Lima M.R.
        • Takakura A.C.
        • Moreira T.S.
        Depletion of rostral ventrolateral medullary catecholaminergic neurons impairs the hypoxic ventilatory response in conscious rats.
        Neuroscience. 2017; 351: 1-14
        • Malheiros-Lima M.R.
        • Totola L.T.
        • Lana M.V.G.
        • Strauss B.E.
        • Takakura A.C.
        • Moreira T.S.
        Breathing responses produced by optogenetic stimulation of adrenergic C1 neurons are dependent on the connection with preBotzinger complex in rats.
        Pflugers Arch. 2018;
        • Molkov Y.I.
        • Zoccal D.B.
        • Baekey D.M.
        • Abdala A.P.
        • Machado B.H.
        • Dick T.E.
        • Paton J.F.
        • Rybak I.A.
        Physiological and pathophysiological interactions between the respiratory central pattern generator and the sympathetic nervous system.
        Prog. Brain Res. 2014; 212: 1-23
        • Morinaga R.
        • Nakamuta N.
        • Yamamoto Y.
        Serotonergic projections to the ventral respiratory column from raphe nuclei in rats.
        Neurosci. Res. 2018;
        • Morrison S.F.
        • Gebber G.L.
        Raphe neurons with sympathetic-related activity: baroreceptor responses and spinal connections.
        Am. J. Phys. 1984; 246: R338-R348
        • Nakamura K.
        • Morrison S.F.
        Central efferent pathways for cold-defensive and febrile shivering.
        J. Physiol. 2011; 589: 3641-3658
        • Nattie E.
        • Li A.
        Respiration and autonomic regulation and orexin.
        Prog. Brain Res. 2012; 198: 25-46
        • Niu J.G.
        • Yokota S.
        • Tsumori T.
        • Qin Y.
        • Yasui Y.
        Glutamatergic lateral parabrachial neurons innervate orexin-containing hypothalamic neurons in the rat.
        Brain Res. 2010; 1358: 110-122
        • Orem J.
        • Lovering A.T.
        • Dunin-Barkowski W.
        • Vidruk E.H.
        Endogenous excitatory drive to the respiratory system in rapid eye movement sleep in cats.
        J. Physiol. 2000; 527: 365-376
        • Padley J.R.
        • Kumar N.N.
        • Li Q.
        • Nguyen T.B.
        • Pilowsky P.M.
        • Goodchild A.K.
        Central command regulation of circulatory function mediated by descending pontine cholinergic inputs to sympathoexcitatory rostral ventrolateral medulla neurons.
        Circ. Res. 2007; 100: 284-291
        • Pisanski A.
        • Pagliardini S.
        The parafacial respiratory group and the control of active expiration.
        Respir. Physiol. Neurobiol. 2018;
        • Rukhadze I.
        • Carballo N.J.
        • Bandaru S.S.
        • Malhotra A.
        • Fuller P.M.
        • Fenik V.B.
        Catecholaminergic A1/C1 neurons contribute to the maintenance of upper airway muscle tone but may not participate in NREM sleep-related depression of these muscles.
        Respir. Physiol. Neurobiol. 2017; 244: 41-50
        • Saito H.
        • Sakai K.
        • Jouvet M.
        Discharge patterns of the nucleus parabrachialis lateralis neurons of the cat during sleep and waking.
        Brain Res. 1977; 134: 59-72
        • Saper C.B.
        The central circadian timing system.
        Curr. Opin. Neurobiol. 2013; 23: 747-751
        • Saper C.B.
        • Fuller P.M.
        Wake-sleep circuitry: an overview.
        Curr. Opin. Neurobiol. 2017; 44: 186-192
        • Saper C.B.
        • Fuller P.M.
        • Pedersen N.P.
        • Lu J.
        • Scammell T.E.
        Sleep state switching.
        Neuron. 2010; 68: 1023-1042
        • Scammell T.E.
        • Arrigoni E.
        • Lipton J.O.
        Neural circuitry of wakefulness and sleep.
        Neuron. 2017; 93: 747-765
        • Schafer T.
        • Schlafke M.E.
        Respiratory changes associated with rapid eye movements in normo- and hypercapnia during sleep.
        J. Appl. Physiol. 1998; 85: 2213-2219
        • Schafer T.
        • Schlafke M.E.
        Variability of CO2-sensitivity during sleep.
        Adv. Exp. Med. Biol. 2001; 499: 459-463
        • Seravalle G.
        • Mancia G.
        • Grassi G.
        Sympathetic nervous system, sleep, and hypertension.
        Curr. Hypertens. Rep. 2018; 20: 74
        • Shahid I.Z.
        • Rahman A.A.
        • Pilowsky P.M.
        Orexin A in rat rostral ventrolateral medulla is pressor, sympatho-excitatory, increases barosensitivity and attenuates the somato-sympathetic reflex.
        Br. J. Pharmacol. 2012; 165: 2292-2303
        • Silvani A.
        • Dampney R.A.
        Central control of cardiovascular function during sleep.
        Am. J. Physiol. Heart Circ. Physiol. 2013; 305: H1683-H1692
        • Silvani A.
        • Grimaldi D.
        • Vandi S.
        • Barletta G.
        • Vetrugno R.
        • Provini F.
        • Pierangeli G.
        • Berteotti C.
        • Montagna P.
        • Zoccoli G.
        • et al.
        Sleep-dependent changes in the coupling between heart period and blood pressure in human subjects.
        Am. J. Phys. Regul. Integr. Comp. Phys. 2008; 294: R1686-R1692
        • Silvani A.
        • Calandra-Buonaura G.
        • Benarroch E.E.
        • Dampney R.A.
        • Cortelli P.
        Bidirectional interactions between the baroreceptor reflex and arousal: an update.
        Sleep Med. 2015; 16: 210-216
        • Sirieix C.
        • Gervasoni D.
        • Luppi P.H.
        • Leger L.
        Role of the lateral paragigantocellular nucleus in the network of paradoxical (REM) sleep: an electrophysiological and anatomical study in the rat.
        PLoS One. 2012; 7e28724
        • Smith J.C.
        • Abdala A.P.
        • Borgmann A.
        • Rybak I.A.
        • Paton J.F.
        Brainstem respiratory networks: building blocks and microcircuits.
        Trends Neurosci. 2013; 36: 152-162
        • Somers V.K.
        • Dyken M.E.
        • Mark A.L.
        • Abboud F.M.
        Sympathetic-nerve activity during sleep in normal subjects.
        N. Engl. J. Med. 1993; 328: 303-307
        • Stornetta R.L.
        • Guyenet P.G.
        C1 neurons: a nodal point for stress?.
        Exp. Physiol. 2018; 103: 332-336
        • Subramanian H.H.
        • Chow C.M.
        • Balnave R.J.
        Identification of different types of respiratory neurones in the dorsal brainstem nucleus tractus solitarius of the rat.
        Brain Res. 2007; 1141: 119-132
        • Tang X.
        • Dworkin B.R.
        Baroreflexes of the rat. VI. Sleep and responses to aortic nerve stimulation in the dmNTS.
        Am. J. Phys. Regul. Integr. Comp. Phys. 2010; 298: R1428-R1434
        • Topchiy I.
        • Waxman J.
        • Radulovacki M.
        • Carley D.W.
        Functional topography of respiratory, cardiovascular and pontine-wave responses to glutamate microstimulation of the pedunculopontine tegmentum of the rat.
        Respir. Physiol. Neurobiol. 2010; 173: 64-70
        • Torterolo P.
        • Scorza C.
        • Lagos P.
        • Urbanavicius J.
        • Benedetto L.
        • Pascovich C.
        • Lopez-Hill X.
        • Chase M.H.
        • Monti J.M.
        Melanin-concentrating hormone (MCH): role in REM sleep and depression.
        Front. Neurosci. 2015; 9: 475
        • Tsunematsu T.
        • Ueno T.
        • Tabuchi S.
        • Inutsuka A.
        • Tanaka K.F.
        • Hasuwa H.
        • Kilduff T.S.
        • Terao A.
        • Yamanaka A.
        Optogenetic manipulation of activity and temporally controlled cell-specific ablation reveal a role for MCH neurons in sleep/wake regulation.
        J. Neurosci. 2014; 34: 6896-6909
        • Uschakov A.
        • Gong H.
        • McGinty D.
        • Szymusiak R.
        Sleep-active neurons in the preoptic area project to the hypothalamic paraventricular nucleus and perifornical lateral hypothalamus.
        Eur. J. Neurosci. 2006; 23: 3284-3296
        • Varin C.
        • Luppi P.H.
        • Fort P.
        Melanin-concentrating hormone-expressing neurons adjust slow-wave sleep dynamics to catalyze paradoxical (REM) sleep.
        Sleep. 2018; 41
        • Weber F.
        • Chung S.
        • Beier K.T.
        • Xu M.
        • Luo L.
        • Dan Y.
        Control of REM sleep by ventral medulla GABAergic neurons.
        Nature. 2015; 526: 435-438
        • Wenker I.C.
        • Abe C.
        • Viar K.E.
        • Stornetta D.S.
        • Stornetta R.L.
        • Guyenet P.G.
        Blood pressure regulation by the rostral ventrolateral medulla in conscious rats: effects of hypoxia, hypercapnia, baroreceptor denervation, and anesthesia.
        J. Neurosci. 2017; 37: 4565-4583
        • Xu M.
        • Chung S.
        • Zhang S.
        • Zhong P.
        • Ma C.
        • Chang W.C.
        • Weissbourd B.
        • Sakai N.
        • Luo L.
        • Nishino S.
        • et al.
        Basal forebrain circuit for sleep-wake control.
        Nat. Neurosci. 2015; 18: 1641-1647
        • Yokota S.
        • Kaur S.
        • VanderHorst V.G.
        • Saper C.B.
        • Chamberlin N.L.
        Respiratory-related outputs of glutamatergic, hypercapnia-responsive parabrachial neurons in mice.
        J. Comp. Neurol. 2015; 523: 907-920
        • Yokota S.
        • Oka T.
        • Asano H.
        • Yasui Y.
        Orexinergic fibers are in contact with Kolliker-Fuse nucleus neurons projecting to the respiration-related nuclei in the medulla oblongata and spinal cord of the rat.
        Brain Res. 2016; 1648: 512-523
        • Zoccal D.B.
        • Furuya W.I.
        • Bassi M.
        • Colombari D.S.
        • Colombari E.
        The nucleus of the solitary tract and the coordination of respiratory and sympathetic activities.
        Front. Physiol. 2014; 5: 238