Advertisement

How reliable is cerebral blood flow to map changes in neuronal activity?

Published:January 28, 2019DOI:https://doi.org/10.1016/j.autneu.2019.01.005

      Highlights

      • Neurovascular coupling links neuronal activity to cerebral blood flow.
      • Neurovascular coupling cascades can differ as a function of the activated pathway.
      • Neurovascular coupling mechanisms are affected by brain states in health and by disease.
      • Pathological conditions such as dementia and stroke affect neurovascular coupling.

      Abstract

      Neuroimaging techniques, such as functional MRI, map brain activity through hemodynamic-based signals, and are invaluable diagnostic tools in several neurological disorders such as stroke and dementia. Hemodynamic signals are normally precisely related to the underlying neuronal activity through neurovascular coupling mechanisms that ensure the supply of blood, glucose and oxygen to neurons at work. The knowledge of neurovascular coupling has greatly advanced over the last 30 years, it involves multifaceted interactions between excitatory and inhibitory neurons, astrocytes, and the microvessels. While the tight relationship between blood flow and neuronal activity forms a fundamental brain function, whether neurovascular coupling mechanisms are reliable across physiological and pathological conditions has been questioned. In this review, we interrogate the relationship between blood flow and neuronal activity during activation of different brain pathways: a sensory stimulation driven by glutamate, and stimulation of neuromodulatory pathways driven by acetylcholine or noradrenaline, and we compare the underlying neurovascular coupling mechanisms. We further question if neurovascular coupling mechanisms are affected by changing brain states, as seen in behavioral conditions of sleep, wakefulness, attention and in pathological conditions. Finally, we provide a short overview of how alterations of the brain vasculature could compromise the reliability of neurovascular coupling. Overall, while neurovascular coupling requires activation of common signalling pathways, alternate unique cascades exist depending on the activated pathways. Further studies are needed to fully elucidate the alterations in neurovascular coupling across brain states and pathological conditions.

      Abbreviations:

      5-HT (serotonin), ACh (acetylcholine), AD (Alzheimer's disease), BOLD (blood-oxygenation level dependent signal), BK (large-conductance Ca2+-activated K+ channels), ChR2 (channelrhodopsin), CBF (cerebral blood flow), EETs (epoxyeicosatrienoic acids), GABA (gamma-aminobutyric acid), Kir (inward rectifier K+), MRI (channels, magnetic resonance imaging), NPY (neuropeptide Y), NVC (neurovascular coupling), NA (noradrenaline), PGE2 (prostaglandin E2), SOM (somatostatin), t-PA (tissue plasminogen activator), VIP (vasoactive intestinal peptide), VGAT (vesicular GABA transporter), VCID (vascular cognitive impairment and dementia)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Autonomic Neuroscience: Basic and Clinical
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Anenberg E.
        • Chan A.W.
        • Xie Y.
        • LeDue J.M.
        • Murphy T.H.
        Optogenetic stimulation of GABA neurons can decrease local neuronal activity while increasing cortical blood flow.
        J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2015; 35: 1579-1586
        • Avery M.C.
        • Krichmar J.L.
        Neuromodulatory systems and their interactions: a review of models, theories, and experiments.
        Front. Neural Circ. 2017; 11: 108
        • Bekar L.K.
        • Wei H.S.
        • Nedergaard M.
        The locus coeruleus-norepinephrine network optimizes coupling of cerebral blood volume with oxygen demand.
        J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2012; 32: 2135-2145
        • Bell R.D.
        • Winkler E.A.
        • Sagare A.P.
        • Singh I.
        • LaRue B.
        • Deane R.
        • Zlokovic B.V.
        Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging.
        Neuron. 2010; 68: 409-427
        • Brown W.R.
        • Thore C.R.
        Review: cerebral microvascular pathology in ageing and neurodegeneration.
        Neuropathol. Appl. Neurobiol. 2011; 37: 56-74
        • Cauli B.
        • Hamel E.
        Brain perfusion and astrocytes.
        Trends Neurosci. 2018; 41: 409-413
        • Cauli B.
        • Tong X.K.
        • Rancillac A.
        • Serluca N.
        • Lambolez B.
        • Rossier J.
        • Hamel E.
        Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways.
        J. Neurosci. 2004; 24: 8940-8949
        • Chen B.R.
        • Kozberg M.G.
        • Bouchard M.B.
        • Shaik M.A.
        • Hillman E.M.
        A critical role for the vascular endothelium in functional neurovascular coupling in the brain.
        J. Am. Heart Assoc. 2014; 3e000787
        • Choi J.K.
        • Chen Y.I.
        • Hamel E.
        • Jenkins B.G.
        Brain hemodynamic changes mediated by dopamine receptors: role of the cerebral microvasculature in dopamine-mediated neurovascular coupling.
        NeuroImage. 2006; 30: 700-712
        • Cohen Z.
        • Molinatti G.
        • Hamel E.
        Astroglial and vascular interactions of noradrenaline terminals in the rat cerebral cortex.
        J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 1997; 17: 894-904
        • Dirnagl U.
        • Lindauer U.
        • Villringer A.
        Role of nitric oxide in the coupling of cerebral blood flow to neuronal activation in rats.
        Neurosci. Lett. 1993; 149: 43-46
        • Dunn K.M.
        • Hill-Eubanks D.C.
        • Liedtke W.B.
        • Nelson M.T.
        TRPV4 channels stimulate Ca2+-induced Ca2+ release in astrocytic endfeet and amplify neurovascular coupling responses.
        Proc. Natl. Acad. Sci. U. S. A. 2013; 110: 6157-6162
        • Fergus A.
        • Lee K.S.
        GABAergic regulation of cerebral microvascular tone in the rat.
        J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 1997; 17: 992-1003
        • Fernandez-Klett F.
        • Offenhauser N.
        • Dirnagl U.
        • Priller J.
        • Lindauer U.
        Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain.
        Proc. Natl. Acad. Sci. U. S. A. 2010; 107: 22290-22295
        • Fields R.D.
        Neuroscience. Change in the brain's white matter.
        Science. 2010; 330: 768-769
        • Filosa J.A.
        • Bonev A.D.
        • Straub S.V.
        • Meredith A.L.
        • Wilkerson M.K.
        • Aldrich R.W.
        • Nelson M.T.
        Local potassium signaling couples neuronal activity to vasodilation in the brain.
        Nat. Neurosci. 2006; 9: 1397-1403
        • Fredriksson I.
        • Larsson M.
        • Stromberg T.
        Measurement depth and volume in laser Doppler flowmetry.
        Microvasc. Res. 2009; 78: 4-13
        • Gebremedhin D.
        • Ma Y.H.
        • Falck J.R.
        • Roman R.J.
        • VanRollins M.
        • Harder D.R.
        Mechanism of action of cerebral epoxyeicosatrienoic acids on cerebral arterial smooth muscle.
        Am. J. Phys. 1992; 263: H519-H525
        • Gentet L.J.
        • Kremer Y.
        • Taniguchi H.
        • Huang Z.J.
        • Staiger J.F.
        • Petersen C.C.
        Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex.
        Nat. Neurosci. 2012; 15: 607-612
        • Giorgi A.
        • Migliarini S.
        • Galbusera A.
        • Maddaloni G.
        • Mereu M.
        • Margiani G.
        • Gritti M.
        • Landi S.
        • Trovato F.
        • Bertozzi S.M.
        • Armirotti A.
        • Ratto G.M.
        • De Luca M.A.
        • Tonini R.
        • Gozzi A.
        • Pasqualetti M.
        Brain-wide mapping of endogenous serotonergic transmission via chemogenetic fMRI.
        Cell Rep. 2017; 21: 910-918
        • Girouard H.
        • Iadecola C.
        Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease.
        J. Appl. Physiol. 2006; 100: 328-335
        • Girouard H.
        • Bonev A.D.
        • Hannah R.M.
        • Meredith A.
        • Aldrich R.W.
        • Nelson M.T.
        Astrocytic endfoot Ca2+ and BK channels determine both arteriolar dilation and constriction.
        Proc. Natl. Acad. Sci. U. S. A. 2010; 107: 3811-3816
        • Gsell W.
        • Burke M.
        • Wiedermann D.
        • Bonvento G.
        • Silva A.C.
        • Dauphin F.
        • Buhrle C.
        • Hoehn M.
        • Schwindt W.
        Differential effects of NMDA and AMPA glutamate receptors on functional magnetic resonance imaging signals and evoked neuronal activity during forepaw stimulation of the rat.
        J. Neurosci. 2006; 26: 8409-8416
        • Hall C.N.
        • Reynell C.
        • Gesslein B.
        • Hamilton N.B.
        • Mishra A.
        • Sutherland B.A.
        • O'Farrell F.M.
        • Buchan A.M.
        • Lauritzen M.
        • Attwell D.
        Capillary pericytes regulate cerebral blood flow in health and disease.
        Nature. 2014; 508: 55-60
        • Hamel E.
        Perivascular nerves and the regulation of cerebrovascular tone.
        J. Appl. Physiol. 2006; 100: 1059-1064
        • Hampel H.
        • Mesulam M.M.
        • Cuello A.C.
        • Farlow M.R.
        • Giacobini E.
        • Grossberg G.T.
        • Khachaturian A.S.
        • Vergallo A.
        • Cavedo E.
        • Snyder P.J.
        • Khachaturian Z.S.
        The cholinergic system in the pathophysiology and treatment of Alzheimer's disease.
        Brain J. Neurol. 2018; 141: 1917-1933
        • Harris K.D.
        • Thiele A.
        Cortical state and attention.
        Nat. Rev. Neurosci. 2011; 12: 509-523
        • Harris S.
        • Ma H.
        • Zhao M.
        • Boorman L.
        • Zheng Y.
        • Kennerley A.
        • Bruyns-Haylett M.
        • Overton P.G.
        • Berwick J.
        • Schwartz T.H.
        Coupling between gamma-band power and cerebral blood volume during recurrent acute neocortical seizures.
        NeuroImage. 2014; 97: 62-70
        • Harrison T.M.
        • McLaren D.G.
        • Moody T.D.
        • Feusner J.D.
        • Bookheimer S.Y.
        Generalized Psychophysiological Interaction (PPI) analysis of memory related connectivity in individuals at genetic risk for alzheimer's disease.
        J. Vis. Exp. 2017; 129: 55394
        • Heneka M.T.
        • Ramanathan M.
        • Jacobs A.H.
        • Dumitrescu-Ozimek L.
        • Bilkei-Gorzo A.
        • Debeir T.
        • Sastre M.
        • Galldiks N.
        • Zimmer A.
        • Hoehn M.
        • Heiss W.D.
        • Klockgether T.
        • Staufenbiel M.
        Locus ceruleus degeneration promotes Alzheimer pathogenesis in amyloid precursor protein 23 transgenic mice.
        J. Neurosci. 2006; 26: 1343-1354
        • Houser C.R.
        • Crawford G.D.
        • Salvaterra P.M.
        • Vaughn J.E.
        Immunocytochemical localization of choline acetyltransferase in rat cerebral cortex: a study of cholinergic neurons and synapses.
        J. Comp. Neurol. 1985; 234: 17-34
        • Hyder F.
        Dynamic imaging of brain function.
        Methods Mol. Biol. 2009; 489: 3-21
        • Iadecola C.
        • Nedergaard M.
        Glial regulation of the cerebral microvasculature.
        Nat. Neurosci. 2007; 10: 1369-1376
        • Iturria-Medina Y.
        • Sotero R.C.
        • Toussaint P.J.
        • Mateos-Perez J.M.
        • Evans A.C.
        • Alzheimer's Disease Neuroimaging I.
        Early role of vascular dysregulation on late-onset Alzheimer's disease based on multifactorial data-driven analysis.
        Nat. Commun. 2016; 7: 11934
        • Jellinger K.A.
        Pathology and pathogenesis of vascular cognitive impairment-a critical update.
        Front. Aging Neurosci. 2013; 5: 17
        • Jia X.
        • Kohn A.
        Gamma rhythms in the brain.
        PLoS Biol. 2011; 9e1001045
        • Kim J.H.
        • Jung A.H.
        • Jeong D.
        • Choi I.
        • Kim K.
        • Shin S.
        • Kim S.J.
        • Lee S.H.
        Selectivity of neuromodulatory projections from the basal forebrain and locus ceruleus to primary sensory cortices.
        J. Neurosci. 2016; 36: 5314-5327
        • Kisler K.
        • Nelson A.R.
        • Montagne A.
        • Zlokovic B.V.
        Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease.
        Nat. Rev. Neurosci. 2017; 18: 419-434
        • Kisler K.
        • Nelson A.R.
        • Rege S.V.
        • Ramanathan A.
        • Wang Y.
        • Ahuja A.
        • Lazic D.
        • Tsai P.S.
        • Zhao Z.
        • Zhou Y.
        • Boas D.A.
        • Sakadzic S.
        • Zlokovic B.V.
        Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain.
        Nat. Neurosci. 2017; 20: 406-416
        • Ko K.R.
        • Ngai A.C.
        • Winn H.R.
        Role of adenosine in regulation of regional cerebral blood flow in sensory cortex.
        Am. J. Phys. 1990; 259: H1703-H1708
        • Kocharyan A.
        • Fernandes P.
        • Tong X.K.
        • Vaucher E.
        • Hamel E.
        Specific subtypes of cortical GABA interneurons contribute to the neurovascular coupling response to basal forebrain stimulation.
        J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2008; 28: 221-231
        • Koehler R.C.
        • Roman R.J.
        • Harder D.R.
        Astrocytes and the regulation of cerebral blood flow.
        Trends Neurosci. 2009; 32: 160-169
        • Kunz A.
        • Iadecola C.
        Cerebral vascular dysregulation in the ischemic brain.
        Handb. Clin. Neurol. 2009; 92: 283-305
        • Kuo S.P.
        • Trussell L.O.
        Spontaneous spiking and synaptic depression underlie noradrenergic control of feed-forward inhibition.
        Neuron. 2011; 71: 306-318
        • Lacroix A.
        • Toussay X.
        • Anenberg E.
        • Lecrux C.
        • Ferreiros N.
        • Karagiannis A.
        • Plaisier F.
        • Chausson P.
        • Jarlier F.
        • Burgess S.A.
        • Hillman E.M.
        • Tegeder I.
        • Murphy T.H.
        • Hamel E.
        • Cauli B.
        COX-2-derived prostaglandin E2 produced by pyramidal neurons contributes to neurovascular coupling in the rodent cerebral cortex.
        J. Neurosci. 2015; 35: 11791-11810
        • Lake E.M.
        • Bazzigaluppi P.
        • Stefanovic B.
        Functional magnetic resonance imaging in chronic ischaemic stroke.
        Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2016; 371
        • Lauritzen M.
        • Gold L.
        Brain function and neurophysiological correlates of signals used in functional neuroimaging.
        J. Neurosci. 2003; 23: 3972-3980
        • Lecrux C.
        • Hamel E.
        The neurovascular unit in brain function and disease.
        Acta Physiol (Oxford). 2011; 203: 47-59
        • Lecrux C.
        • Toussay X.
        • Kocharyan A.
        • Fernandes P.
        • Neupane S.
        • Levesque M.
        • Plaisier F.
        • Shmuel A.
        • Cauli B.
        • Hamel E.
        Pyramidal neurons are “neurogenic hubs” in the neurovascular coupling response to whisker stimulation.
        J. Neurosci. 2011; 31: 9836-9847
        • Lecrux C.
        • Kocharyan A.
        • Sandoe C.H.
        • Tong X.K.
        • Hamel E.
        Pyramidal cells and cytochrome P450 epoxygenase products in the neurovascular coupling response to basal forebrain cholinergic input.
        J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2012; 32: 896-906
        • Lecrux C.
        • Sandoe C.H.
        • Neupane S.
        • Kropf P.
        • Toussay X.
        • Tong X.K.
        • Lacalle-Aurioles M.
        • Shmuel A.
        • Hamel E.
        Impact of altered cholinergic tones on the neurovascular coupling response to whisker stimulation.
        J. Neurosci. 2017; 37: 1518-1531
        • Lee S.
        • Kruglikov I.
        • Huang Z.J.
        • Fishell G.
        • Rudy B.
        A disinhibitory circuit mediates motor integration in the somatosensory cortex.
        Nat. Neurosci. 2013; 16: 1662-1670
        • Li N.
        • van Zijl P.
        • Thakor N.
        • Pelled G.
        Study of the spatial correlation between neuronal activity and BOLD fMRI responses evoked by sensory and channelrhodopsin-2 stimulation in the rat somatosensory cortex.
        J. Mol. Neurosci. 2014; 53: 553-561
        • Lindauer U.
        • Megow D.
        • Matsuda H.
        • Dirnagl U.
        Nitric oxide: a modulator, but not a mediator, of neurovascular coupling in rat somatosensory cortex.
        Am. J. Phys. 1999; 277: H799-H811
        • Liu X.
        • Li C.
        • Falck J.R.
        • Roman R.J.
        • Harder D.R.
        • Koehler R.C.
        Interaction of nitric oxide, 20-HETE, and EETs during functional hyperemia in whisker barrel cortex.
        Am. J. Phys. Heart Circ. Phys. 2008; 295: H619-H631
        • Logothetis N.K.
        • Pauls J.
        • Augath M.
        • Trinath T.
        • Oeltermann A.
        Neurophysiological investigation of the basis of the fMRI signal.
        Nature. 2001; 412: 150-157
        • Long J.B.
        • Rigamonti D.D.
        • Dosaka K.
        • Kraimer J.M.
        • Martinez-Arizala A.
        Somatostatin causes vasoconstriction, reduces blood flow and increases vascular permeability in the rat central nervous system.
        J. Pharmacol. Exp. Ther. 1992; 260: 1425-1432
        • Longden T.A.
        • Nelson M.T.
        Vascular inward rectifier K+ channels as external K+ sensors in the control of cerebral blood flow.
        Microcirculation (New York, NY: 1994). 2015; 22: 183-196
        • Lourenco C.F.
        • Ledo A.
        • Barbosa R.M.
        • Laranjinha J.
        Neurovascular-neuroenergetic coupling axis in the brain: master regulation by nitric oxide and consequences in aging and neurodegeneration.
        Free Radic. Biol. Med. 2017; 108: 668-682
        • Love S.
        • Miners J.S.
        Cerebrovascular disease in ageing and Alzheimer's disease.
        Acta Neuropathol. 2016; 131: 645-658
        • Martindale J.
        • Mayhew J.
        • Berwick J.
        • Jones M.
        • Martin C.
        • Johnston D.
        • Redgrave P.
        • Zheng Y.
        The hemodynamic impulse response to a single neural event.
        J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2003; 23: 546-555
        • Mathias E.J.
        • Kenny A.
        • Plank M.J.
        • David T.
        Integrated models of neurovascular coupling and BOLD signals: responses for varying neural activations.
        NeuroImage. 2018; 174: 69-86
        • Mishra A.
        • Reynolds J.P.
        • Chen Y.
        • Gourine A.V.
        • Rusakov D.A.
        • Attwell D.
        Astrocytes mediate neurovascular signaling to capillary pericytes but not to arterioles.
        Nat. Neurosci. 2016; 19: 1619-1627
        • Morii S.
        • Ngai A.C.
        • Ko K.R.
        • Winn H.R.
        Role of adenosine in regulation of cerebral blood flow: effects of theophylline during normoxia and hypoxia.
        Am. J. Phys. 1987; 253: H165-H175
        • Murta T.
        • Chaudhary U.J.
        • Tierney T.M.
        • Dias A.
        • Leite M.
        • Carmichael D.W.
        • Figueiredo P.
        • Lemieux L.
        Phase-amplitude coupling and the BOLD signal: a simultaneous intracranial EEG (icEEG) - fMRI study in humans performing a finger-tapping task.
        NeuroImage. 2017; 146: 438-451
        • Nicolakakis N.
        • Aboulkassim T.
        • Aliaga A.
        • Tong X.K.
        • Rosa-Neto P.
        • Hamel E.
        Intact memory in TGF-beta1 transgenic mice featuring chronic cerebrovascular deficit: recovery with pioglitazone.
        J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2011; 31: 200-211
        • Niessing J.
        • Ebisch B.
        • Schmidt K.E.
        • Niessing M.
        • Singer W.
        • Galuske R.A.
        Hemodynamic signals correlate tightly with synchronized gamma oscillations.
        Science. 2005; 309: 948-951
        • Niwa K.
        • Araki E.
        • Morham S.G.
        • Ross M.E.
        • Iadecola C.
        Cyclooxygenase-2 contributes to functional hyperemia in whisker-barrel cortex.
        J. Neurosci. 2000; 20: 763-770
        • Orman B.
        • Reina S.
        • Sterin-Borda L.
        • Borda E.
        Signaling pathways leading to prostaglandin E(2) production by rat cerebral frontal cortex.
        Prostaglandins Leukot. Essent. Fat. Acids. 2006; 74: 255-262
        • Park L.
        • Anrather J.
        • Forster C.
        • Kazama K.
        • Carlson G.A.
        • Iadecola C.
        Abeta-induced vascular oxidative stress and attenuation of functional hyperemia in mouse somatosensory cortex.
        J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2004; 24: 334-342
        • Pendharkar A.V.
        • Levy S.L.
        • Ho A.L.
        • Sussman E.S.
        • Cheng M.Y.
        • Steinberg G.K.
        Optogenetic modulation in stroke recovery.
        Neurosurg. Focus. 2016; 40E6
        • Peng X.
        • Carhuapoma J.R.
        • Bhardwaj A.
        • Alkayed N.J.
        • Falck J.R.
        • Harder D.R.
        • Traystman R.J.
        • Koehler R.C.
        Suppression of cortical functional hyperemia to vibrissal stimulation in the rat by epoxygenase inhibitors.
        Am. J. Phys. Heart Circ. Phys. 2002; 283: H2029-H2037
        • Pepicelli O.
        • Fedele E.
        • Berardi M.
        • Raiteri M.
        • Levi G.
        • Greco A.
        • Ajmone-Cat M.A.
        • Minghetti L.
        Cyclo-oxygenase-1 and -2 differently contribute to prostaglandin E2 synthesis and lipid peroxidation after in vivo activation of N-methyl-D-aspartate receptors in rat hippocampus.
        J. Neurochem. 2005; 93: 1561-1567
        • Peppiatt C.M.
        • Howarth C.
        • Mobbs P.
        • Attwell D.
        Bidirectional control of CNS capillary diameter by pericytes.
        Nature. 2006; 443: 700-704
        • Perry R.J.
        • Hodges J.R.
        Attention and executive deficits in Alzheimer's disease. A critical review.
        Brain J. Neurol. 1999; 122: 383-404
        • Pi H.J.
        • Hangya B.
        • Kvitsiani D.
        • Sanders J.I.
        • Huang Z.J.
        • Kepecs A.
        Cortical interneurons that specialize in disinhibitory control.
        Nature. 2013; 503: 521-524
        • Piche M.
        • Uchida S.
        • Hara S.
        • Aikawa Y.
        • Hotta H.
        Modulation of somatosensory-evoked cortical blood flow changes by GABAergic inhibition of the nucleus basalis of Meynert in urethane-anaesthetized rats.
        J. Physiol. 2010; 588: 2163-2171
        • Querfurth H.W.
        • LaFerla F.M.
        Alzheimer's disease.
        N. Engl. J. Med. 2010; 362: 329-344
        • Raichle M.E.
        • Hartman B.K.
        • Eichling J.O.
        • Sharpe L.G.
        Central noradrenergic regulation of cerebral blood flow and vascular permeability.
        Proc. Natl. Acad. Sci. U. S. A. 1975; 72: 3726-3730
        • Roland E.
        • Larsen B.
        Focal increase of cerebral blood flow during stereognostic testing in man.
        Arch. Neurol. 1976; 33: 551-558
        • Rosenblum W.I.
        • Weinbrecht P.
        • Nelson G.H.
        Propagated constriction in mouse pial arterioles: possible role of endothelium in transmitting the propagated response.
        Microcirc. Endothel. Lymphat. 1990; 6: 369-387
        • Roy C.S.
        • Sherrington C.S.
        On the regulation of the blood-supply of the brain.
        J. Physiol. 1890; 11: 85-158.117
        • Sagare A.P.
        • Bell R.D.
        • Zhao Z.
        • Ma Q.
        • Winkler E.A.
        • Ramanathan A.
        • Zlokovic B.V.
        Pericyte loss influences Alzheimer-like neurodegeneration in mice.
        Nat. Commun. 2013; 4: 2932
        • Sakurada O.
        • Kennedy C.
        • Jehle J.
        • Brown J.D.
        • Carbin G.L.
        • Sokoloff L.
        Measurement of local cerebral blood flow with iodo [14C] antipyrine.
        Am. J. Phys. 1978; 234: H59-H66
        • Sandrone S.
        • Bacigaluppi M.
        • Galloni M.R.
        • Martino G.
        Angelo Mosso (1846-1910).
        J. Neurol. 2012; 259: 2513-2514
        • Sanganahalli B.G.
        • Herman P.
        • Behar K.L.
        • Blumenfeld H.
        • Rothman D.L.
        • Hyder F.
        Functional MRI and neural responses in a rat model of Alzheimer's disease.
        NeuroImage. 2013; 79: 404-411
        • Sato A.
        • Sato Y.
        • Uchida S.
        Regulation of regional cerebral blood flow by cholinergic fibers originating in the basal forebrain.
        Int. J. Dev. Neurosci. Off. J. Int. Soc. Dev. Neurosci. 2001; 19: 327-337
        • Seguela P.
        • Watkins K.C.
        • Geffard M.
        • Descarries L.
        Noradrenaline axon terminals in adult rat neocortex: an immunocytochemical analysis in serial thin sections.
        Neuroscience. 1990; 35: 249-264
        • Sharp P.S.
        • Shaw K.
        • Boorman L.
        • Harris S.
        • Kennerley A.J.
        • Azzouz M.
        • Berwick J.
        Comparison of stimulus-evoked cerebral hemodynamics in the awake mouse and under a novel anesthetic regime.
        Sci. Rep. 2015; 5: 12621
        • Sheline Y.I.
        • Raichle M.E.
        Resting state functional connectivity in preclinical Alzheimer's disease.
        Biol. Psychiatry. 2013; 74: 340-347
        • Shi Y.
        • Liu X.
        • Gebremedhin D.
        • Falck J.R.
        • Harder D.R.
        • Koehler R.C.
        Interaction of mechanisms involving epoxyeicosatrienoic acids, adenosine receptors, and metabotropic glutamate receptors in neurovascular coupling in rat whisker barrel cortex.
        J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2008; 28: 111-125
        • Shmuel A.
        • Leopold D.A.
        Neuronal correlates of spontaneous fluctuations in fMRI signals in monkey visual cortex: implications for functional connectivity at rest.
        Hum. Brain Mapp. 2008; 29: 751-761
        • Smith C.D.
        • Andersen A.H.
        • Kryscio R.J.
        • Schmitt F.A.
        • Kindy M.S.
        • Blonder L.X.
        • Avison M.J.
        Altered brain activation in cognitively intact individuals at high risk for Alzheimer's disease.
        Neurology. 1999; 53: 1391-1396
        • Sorond F.A.
        • Hurwitz S.
        • Salat D.H.
        • Greve D.N.
        • Fisher N.D.
        Neurovascular coupling, cerebral white matter integrity, and response to cocoa in older people.
        Neurology. 2013; 81: 904-909
        • Strandgaard S.
        • Paulson O.B.
        Cerebral autoregulation.
        Stroke. 1984; 15: 413-416
        • Summers P.M.
        • Hartmann D.A.
        • Hui E.S.
        • Nie X.
        • Deardorff R.L.
        • McKinnon E.T.
        • Helpern J.A.
        • Jensen J.H.
        • Shih A.Y.
        Functional deficits induced by cortical microinfarcts.
        J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2017; 37: 3599-3614
        • Sutherland B.A.
        • Fordsmann J.C.
        • Martin C.
        • Neuhaus A.A.
        • Witgen B.M.
        • Piilgaard H.
        • Lonstrup M.
        • Couch Y.
        • Sibson N.R.
        • Lauritzen M.
        • Buchan A.M.
        Multi-modal assessment of neurovascular coupling during cerebral ischaemia and reperfusion using remote middle cerebral artery occlusion.
        J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2017; 37: 2494-2508
        • Tennant K.A.
        • Taylor S.L.
        • White E.R.
        • Brown C.E.
        Optogenetic rewiring of thalamocortical circuits to restore function in the stroke injured brain.
        Nat. Commun. 2017; 8: 15879
        • Thomas T.
        • Thomas G.
        • McLendon C.
        • Sutton T.
        • Mullan M.
        beta-Amyloid-mediated vasoactivity and vascular endothelial damage.
        Nature. 1996; 380: 168-171
        • Tian P.
        • Teng I.C.
        • May L.D.
        • Kurz R.
        • Lu K.
        • Scadeng M.
        • Hillman E.M.
        • De Crespigny A.J.
        • D'Arceuil H.E.
        • Mandeville J.B.
        • Marota J.J.
        • Rosen B.R.
        • Liu T.T.
        • Boas D.A.
        • Buxton R.B.
        • Dale A.M.
        • Devor A.
        Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal.
        Proc. Natl. Acad. Sci. U. S. A. 2010; 107: 15246-15251
        • Tong X.K.
        • Nicolakakis N.
        • Kocharyan A.
        • Hamel E.
        Vascular remodeling versus amyloid beta-induced oxidative stress in the cerebrovascular dysfunctions associated with Alzheimer's disease.
        J. Neurosci. 2005; 25: 11165-11174
        • Toussay X.
        • Basu K.
        • Lacoste B.
        • Hamel E.
        Locus coeruleus stimulation recruits a broad cortical neuronal network and increases cortical perfusion.
        J. Neurosci. 2013; 33: 3390-3401
        • Touzani O.
        • Roussel S.
        • MacKenzie E.T.
        The ischaemic penumbra.
        Curr. Opin. Neurol. 2001; 14: 83-88
        • Tuor U.I.
        • Kelly P.A.
        • Edvinsson L.
        • McCulloch J.
        Neuropeptide Y and the cerebral circulation.
        J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 1990; 10: 591-601
        • Uhlirova H.
        • et al.
        Cell type specificity of neurovascular coupling in cerebral cortex.
        elife. 2016; 5
        • Underwood M.D.
        • Bakalian M.J.
        • Arango V.
        • Mann J.J.
        Effect of chemical stimulation of the dorsal raphe nucleus on cerebral blood flow in rat.
        Neurosci. Lett. 1995; 199: 228-230
        • Vaucher E.
        • Hamel E.
        Cholinergic basal forebrain neurons project to cortical microvessels in the rat: electron microscopic study with anterogradely transported Phaseolus vulgaris leucoagglutinin and choline acetyltransferase immunocytochemistry.
        J. Neurosci. 1995; 15: 7427-7441
        • Vaucher E.
        • Borredon J.
        • Seylaz J.
        • Lacombe P.
        Autoradiographic distribution of cerebral blood flow increases elicited by stimulation of the nucleus basalis magnocellularis in the unanesthetized rat.
        Brain Res. 1995; 691: 57-68
        • Weinshenker D.
        Functional consequences of locus coeruleus degeneration in Alzheimer's disease.
        Curr. Alzheimer Res. 2008; 5: 342-345
        • Whitehouse P.J.
        • Price D.L.
        • Struble R.G.
        • Clark A.W.
        • Coyle J.T.
        • Delon M.R.
        Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain.
        Science. 1982; 215: 1237-1239
        • Woolsey T.A.
        • Rovainen C.M.
        • Cox S.B.
        • Henegar M.H.
        • Liang G.E.
        • Liu D.
        • Moskalenko Y.E.
        • Sui J.
        • Wei L.
        Neuronal units linked to microvascular modules in cerebral cortex: response elements for imaging the brain.
        Cereb. Cortex. 1996; 6: 647-660
        • Wu D.M.
        • Minami M.
        • Kawamura H.
        • Puro D.G.
        Electrotonic transmission within pericyte-containing retinal microvessels.
        Microcirculation (New York, NY: 1994). 2006; 13: 353-363
        • Wyss-Coray T.
        • Lin C.
        • von Euw D.
        • Masliah E.
        • Mucke L.
        • Lacombe P.
        Alzheimer's disease-like cerebrovascular pathology in transforming growth factor-beta 1 transgenic mice and functional metabolic correlates.
        Ann. N. Y. Acad. Sci. 2000; 903: 317-323
        • Xu H.L.
        • Mao L.
        • Ye S.
        • Paisansathan C.
        • Vetri F.
        • Pelligrino D.A.
        Astrocytes are a key conduit for upstream signaling of vasodilation during cerebral cortical neuronal activation in vivo.
        Am. J. Phys. Heart Circ. Phys. 2008; 294: H622-H632
        • Yaksh T.L.
        • Wang J.Y.
        • Go V.L.
        Cortical vasodilatation produced by vasoactive intestinal polypeptide (VIP) and by physiological stimuli in the cat.
        J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 1987; 7: 315-326
        • Zonta M.
        • Angulo M.C.
        • Gobbo S.
        • Rosengarten B.
        • Hossmann K.A.
        • Pozzan T.
        • Carmignoto G.
        Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation.
        Nat. Neurosci. 2003; 6: 43-50