Advertisement

A time to fight: Circadian control of aggression and associated autonomic support

  • Author Footnotes
    1 Equal contribution.
    William D. Todd
    Correspondence
    Corresponding author at: Beth Israel Deaconess Medical Center, Department of Neurology, 330 Brookline Ave, E/CLS 7, Boston, MA 02215, USA.
    Footnotes
    1 Equal contribution.
    Affiliations
    Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
    Search for articles by this author
  • Author Footnotes
    1 Equal contribution.
    Natalia L. Machado
    Footnotes
    1 Equal contribution.
    Affiliations
    Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
    Search for articles by this author
  • Author Footnotes
    1 Equal contribution.
Published:December 23, 2018DOI:https://doi.org/10.1016/j.autneu.2018.12.008

      Abstract

      The central circadian clock, located in the suprachiasmatic nucleus of the mammalian hypothalamus (SCN), regulates daily behavioral rhythms including the temporal propensity for aggressive behavior. Such aggression propensity rhythms are regulated by a functional circuit from the SCN to neurons that drive attack behavior in the ventromedial hypothalamus (VMH), via a relay in the subparaventricular zone (SPZ). In addition to this pathway, the SCN also regulates sleep-wake and locomotor activity rhythms, via the SPZ, in a circuit to the dorsomedial hypothalamus (DMH), a structure that is also known to play a key role in autonomic function and the sympathetic “fight-or-flight” response (which prepares the body for action in stressful situations such as an agonistic encounter). While the autonomic nervous system is known to be under pronounced circadian control, it is less apparent how such autonomic rhythms and their underlying circuitry may support the temporal propensity for aggressive behavior. Additionally, it is unclear how circadian and autonomic dysfunction may contribute to aberrant social and emotional behavior, such as agitation and aggression. Here we review the literature concerning interactions between the circadian and autonomic systems and aggression, and we discuss the implications of these relationships for human neural and behavioral pathologies.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Autonomic Neuroscience: Basic and Clinical
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Amir S.
        • Shizgal P.
        • Rompre P.P.
        Glutamate injection into the suprachiasmatic nucleus stimulates brown fat thermogenesis in the rat.
        Brain Res. 1989; 498: 140-144
        • Bachman D.
        • Rabins P.
        “Sundowning” and other temporally associated agitation states in dementia patients.
        Annu. Rev. Med. 2006; 57: 499-511
        • Bedrosian T.A.
        • Nelson R.J.
        Sundowning syndrome in aging and dementia: research in mouse models.
        Exp. Neurol. 2013; 243: 67-73
        • Boettger S.
        • Hoyer D.
        • Falkenhahn K.
        • Kaatz M.
        • Yeragani V.K.
        • Bar K.J.
        Altered diurnal autonomic variation and reduced vagal information flow in acute schizophrenia.
        Clin. Neurophysiol. 2006; 117: 2715-2722
        • Bray M.S.
        • Shaw C.A.
        • Moore M.W.
        • Garcia R.A.
        • Zanquetta M.M.
        • Durgan D.J.
        • Jeong W.J.
        • Tsai J.Y.
        • Bugger H.
        • Zhang D.
        • Rohrwasser A.
        • Rennison J.H.
        • Dyck J.R.
        • Litwin S.E.
        • Hardin P.E.
        • Chow C.W.
        • Chandler M.P.
        • Abel E.D.
        • Young M.E.
        Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression.
        Am. J. Physiol. Heart Circ. Physiol. 2008; 294: H1036-H1047
        • Bronsard G.
        • Bartolomei F.
        Rhythms, rhythmicity and aggression.
        J. Physiol. Paris. 2013; 107: 327-334
        • Buijs R.M.
        • Escobar C.
        • Swaab D.F.
        The circadian system and the balance of the autonomic nervous system.
        Handb. Clin. Neurol. 2013; 117: 173-191
        • Canevelli M.
        • Valletta M.
        • Trebbastoni A.
        • Sarli G.
        • D'Antonio F.
        • Tariciotti L.
        • De Lena C.
        • Bruno G.
        Sundowning in dementia: clinical relevance, pathophysiological determinants, and therapeutic approaches.
        Front. Med. 2016; 3: 73
        • Cannon W.
        Bodily changes in pain, hunger, fear and rage.
        in: Appleton and Co. 1929
        • Canteras N.S.
        • Simerly R.B.
        • Swanson L.W.
        Organization of projections from the ventromedial nucleus of the hypothalamus: a Phaseolus vulgaris-leucoagglutinin study in the rat.
        J. Comp. Neurol. 1994; 348: 41-79
        • Cao W.H.
        • Morrison S.F.
        Disinhibition of rostral raphe pallidus neurons increases cardiac sympathetic nerve activity and heart rate.
        Brain Res. 2003; 980: 1-10
        • Carnevali L.
        • Trombini M.
        • Porta A.
        • Montano N.
        • De Boer S.F.
        • Sgoifo A.
        Vagal withdrawal and susceptibility to cardiac arrhythmias in rats with high trait aggressiveness.
        PLoS One. 2013; 8e68316
        • Chou T.C.
        • Scammell T.E.
        • Gooley J.J.
        • Gaus S.E.
        • Saper C.B.
        • Lu J.
        Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms.
        J. Neurosci. 2003; 23: 10691-10702
        • Cohen H.
        • Benjamin J.
        Power spectrum analysis and cardiovascular morbidity in anxiety disorders.
        Auton. Neurosci. 2006; 128: 1-8
        • Cohen H.
        • Benjamin J.
        • Geva A.B.
        • Matar M.A.
        • Kaplan Z.
        • Kotler M.
        Autonomic dysregulation in panic disorder and in post-traumatic stress disorder: application of power spectrum analysis of heart rate variability at rest and in response to recollection of trauma or panic attacks.
        Psychiatry Res. 2000; 96: 1-13
        • Cohen S.
        • Fulcher B.D.
        • Rajaratnam S.M.W.
        • Conduit R.
        • Sullivan J.P.
        • St Hilaire M.A.
        • Phillips A.J.K.
        • Loddenkemper T.
        • Kothare S.V.
        • Mcconnell K.
        • Braga-Kenyon P.
        • Ahearn W.
        • Shlesinger A.
        • Potter J.
        • Bird F.
        • Cornish K.M.
        • Lockley S.W.
        Sleep patterns predictive of daytime challenging behavior in individuals with low-functioning autism.
        Autism Res. 2018; 11: 391-403
        • Dampney R.A.
        Central mechanisms regulating coordinated cardiovascular and respiratory function during stress and arousal.
        Am. J. Phys. Regul. Integr. Comp. Phys. 2015; 309: R429-R443
        • DiMicco J.A.
        • Samuels B.C.
        • Zaretskaia M.V.
        • Zaretsky D.V.
        The dorsomedial hypothalamus and the response to stress: part renaissance, part revolution.
        Pharmacol. Biochem. Behav. 2002; 71: 469-480
        • Engeland W.C.
        • Arnhold M.M.
        Neural circuitry in the regulation of adrenal corticosterone rhythmicity.
        Endocrine. 2005; 28: 325-332
        • Falkner A.L.
        • Lin D.
        Recent advances in understanding the role of the hypothalamic circuit during aggression.
        Front. Syst. Neurosci. 2014; 8: 168
        • Fontes M.A.
        • Tagawa T.
        • Polson J.W.
        • Cavanagh S.J.
        • Dampney R.A.
        Descending pathways mediating cardiovascular response from dorsomedial hypothalamic nucleus.
        Am. J. Physiol. Heart Circ. Physiol. 2001; 280: H2891-H2901
        • Fontes M.A.
        • Xavier C.H.
        • De Menezes R.C.
        • Dimicco J.A.
        The dorsomedial hypothalamus and the central pathways involved in the cardiovascular response to emotional stress.
        Neuroscience. 2011; 184: 64-74
        • Fontes M.A.P.
        • Filho M.L.
        • Santos Machado N.L.
        • De Paula C.A.
        • Souza Cordeiro L.M.
        • Xavier C.H.
        • Marins F.R.
        • Henderson L.
        • Macefield V.G.
        Asymmetric sympathetic output: the dorsomedial hypothalamus as a potential link between emotional stress and cardiac arrhythmias.
        Auton. Neurosci. 2017; 207: 22-27
        • Gall A.J.
        • Todd W.D.
        • Blumberg M.S.
        Development of SCN connectivity and the circadian control of arousal: a diminishing role for humoral factors?.
        PLoS One. 2012; 7e45338
        • Geerling J.C.
        • Mettenleiter T.C.
        • Loewy A.D.
        Orexin neurons project to diverse sympathetic outflow systems.
        Neuroscience. 2003; 122: 541-550
        • Gooley J.J.
        • Lu J.
        • Fischer D.
        • Saper C.B.
        A broad role for melanopsin in nonvisual photoreception.
        J. Neurosci. 2003; 23: 7093-7106
        • Haller J.
        The glucocorticoid/aggression relationship in animals and humans: an analysis sensitive to behavioral characteristics, glucocorticoid secretion patterns, and neural mechanisms.
        Curr. Top. Behav. Neurosci. 2014; 17: 73-109
        • Haller J.
        • Makara G.B.
        • Kruk M.R.
        Catecholaminergic involvement in the control of aggression: hormones, the peripheral sympathetic, and central noradrenergic systems.
        Neurosci. Biobehav. Rev. 1998; 22: 85-97
        • Haller J.
        • Halasz J.
        • Mikics E.
        • Kruk M.R.
        • Makara G.B.
        Ultradian corticosterone rhythm and the propensity to behave aggressively in male rats.
        J. Neuroendocrinol. 2000; 12: 937-940
        • Haller J.
        • Millar S.
        • Van De Schraaf J.
        • De Kloet R.E.
        • Kruk M.R.
        The active phase-related increase in corticosterone and aggression are linked.
        J. Neuroendocrinol. 2000; 12: 431-436
        • Haller J.
        • Raczkevy-Deak G.
        • Gyimesine K.P.
        • Szakmary A.
        • Farkas I.
        • Vegh J.
        Cardiac autonomic functions and the emergence of violence in a highly realistic model of social conflict in humans.
        Front. Behav. Neurosci. 2014; 8: 364
        • Heiler S.
        • Legenbauer T.
        • Bogen T.
        • Jensch T.
        • Holtmann M.
        Severe mood dysregulation: in the “light” of circadian functioning.
        Med. Hypotheses. 2011; 77: 692-695
        • Henry B.L.
        • Minassian A.
        • Paulus M.P.
        • Geyer M.A.
        • Perry W.
        Heart rate variability in bipolar mania and schizophrenia.
        J. Psychiatr. Res. 2010; 44: 168-176
        • Hood S.
        • Amir S.
        Biological clocks and rhythms of anger and aggression.
        Front. Behav. Neurosci. 2018; 12: 4
        • Horiuchi J.
        • Mcallen R.M.
        • Allen A.M.
        • Killinger S.
        • Fontes M.A.
        • Dampney R.A.
        Descending vasomotor pathways from the dorsomedial hypothalamic nucleus: role of medullary raphe and RVLM.
        Am. J. Phys. Regul. Integr. Comp. Phys. 2004; 287: R824-R832
        • James C.
        • Macefield V.G.
        • Henderson L.A.
        Real-time imaging of cortical and subcortical control of muscle sympathetic nerve activity in awake human subjects.
        NeuroImage. 2013; 70: 59-65
        • Jensen-Dahm C.
        • Waldemar G.
        • Staehelin Jensen T.
        • Malmqvist L.
        • Moeller M.M.
        • Andersen B.B.
        • Hogh P.
        • Ballegaard M.
        Autonomic dysfunction in patients with mild to moderate Alzheimer's disease.
        J. Alzheimers Dis. 2015; 47: 681-689
        • Jin X.
        • Shearman L.P.
        • Weaver D.R.
        • Zylka M.J.
        • De Vries G.J.
        • Reppert S.M.
        A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock.
        Cell. 1999; 96: 57-68
        • Kataoka N.
        • Hioki H.
        • Kaneko T.
        • Nakamura K.
        Psychological stress activates a dorsomedial hypothalamus-medullary raphe circuit driving brown adipose tissue thermogenesis and hyperthermia.
        Cell Metab. 2014; 20: 346-358
        • Khachiyants N.
        • Trinkle D.
        • Son S.J.
        • Kim K.Y.
        Sundown syndrome in persons with dementia: an update.
        Psychiatry Investig. 2011; 8: 275-287
        • Kuwaki T.
        • Zhang W.
        • Nakamura A.
        • Deng B.S.
        Emotional and state-dependent modification of cardiorespiratory function: role of orexinergic neurons.
        Auton. Neurosci. 2008; 142: 11-16
        • Kvetnansky R.
        • Pacak K.
        • Fukuhara K.
        • Viskupic E.
        • Hiremagalur B.
        • Nankova B.
        • Goldstein D.S.
        • Sabban E.L.
        • Kopin I.J.
        Sympathoadrenal system in stress. Interaction with the hypothalamic-pituitary-adrenocortical system.
        Ann. N. Y. Acad. Sci. 1995; 771: 131-158
        • Lampert R.
        Anger and ventricular arrhythmias.
        Curr. Opin. Cardiol. 2010; 25: 46-52
        • Landau I.T.
        Effects of adrenalectomy on rhythmic and non-rhythmic aggressive behavior in the male golden hamster.
        Physiol. Behav. 1975; 14: 775-780
        • Landau I.T.
        Light-dark rhythms in aggressive behavior of the male golden hamster.
        Physiol. Behav. 1975; 14: 767-774
        • Lee H.
        • Kim D.W.
        • Remedios R.
        • Anthony T.E.
        • Chang A.
        • Madisen L.
        • Zeng H.
        • Anderson D.J.
        Scalable control of mounting and attack by Esr1+ neurons in the ventromedial hypothalamus.
        Nature. 2014; 509: 627-632
        • Li H.Y.
        • Sawchenko P.E.
        Hypothalamic effector neurons and extended circuitries activated in “neurogenic” stress: a comparison of footshock effects exerted acutely, chronically, and in animals with controlled glucocorticoid levels.
        J. Comp. Neurol. 1998; 393: 244-266
        • Lin D.
        • Boyle M.P.
        • Dollar P.
        • Lee H.
        • Lein E.S.
        • Perona P.
        • Anderson D.J.
        Functional identification of an aggression locus in the mouse hypothalamus.
        Nature. 2011; 470: 221-226
        • Lisa M.
        • Marmo E.
        • Wible Jr., J.H.
        • Dimicco J.A.
        Injection of muscimol into posterior hypothalamus blocks stress-induced tachycardia.
        Am. J. Phys. 1989; 257: R246-R251
        • Lorber M.F.
        Psychophysiology of aggression, psychopathy, and conduct problems: a meta-analysis.
        Psychol. Bull. 2004; 130: 531-552
        • Lu J.
        • Zhang Y.H.
        • Chou T.C.
        • Gaus S.E.
        • Elmquist J.K.
        • Shiromani P.
        • Saper C.B.
        Contrasting effects of ibotenate lesions of the paraventricular nucleus and subparaventricular zone on sleep-wake cycle and temperature regulation.
        J. Neurosci. 2001; 21: 4864-4874
        • Macefield V.G.
        • Henderson L.A.
        “Real-time” imaging of cortical and subcortical sites of cardiovascular control: concurrent recordings of sympathetic nerve activity and fMRI in awake subjects.
        J. Neurophysiol. 2016; 116: 1199-1207
        • Machado N.L.S.
        • Abbott S.B.G.
        • Resch J.M.
        • Zhu L.
        • Arrigoni E.
        • Lowell B.B.
        • Fuller P.M.
        • Fontes M.A.P.
        • Saper C.B.
        A glutamatergic hypothalamomedullary circuit mediates thermogenesis, but not heat conservation, during stress-induced hyperthermia.
        Curr. Biol. 2018; 28e5
        • Manfredini R.
        • Vanni A.
        • Peron L.
        • La Cecilia O.
        • Smolensky M.H.
        • Grassi L.
        Day-night variation in aggressive behavior among psychiatric inpatients.
        Chronobiol. Int. 2001; 18: 503-511
        • Mazuski C.
        • Abel J.H.
        • Chen S.P.
        • Hermanstyne T.O.
        • Jones J.R.
        • Simon T.
        • Doyle 3rd, F.J.
        • Herzog E.D.
        Entrainment of circadian rhythms depends on firing rates and neuropeptide release of VIP SCN neurons.
        Neuron. 2018; 99: 555-563 e5
        • Mohawk J.A.
        • Green C.B.
        • Takahashi J.S.
        Central and peripheral circadian clocks in mammals.
        Annu. Rev. Neurosci. 2012; 35: 445-462
        • Morrison S.F.
        Central pathways controlling brown adipose tissue thermogenesis.
        News Physiol. Sci. 2004; 19: 67-74
        • Nelson R.J.
        • Trainor B.C.
        Neural mechanisms of aggression.
        Nat. Rev. Neurosci. 2007; 8: 536-546
        • Ootsuka Y.
        • de Menezes R.C.
        • Zaretsky D.V.
        • Alimoradian A.
        • Hunt J.
        • Stefanidis A.
        • Oldfield B.J.
        • Blessing WW.
        Brown adipose tissue thermogenesis heats brain and body as part of the brain-coordinated ultradian basic rest-activity cycle.
        Neuroscience. 2009; 164: 849-861
        • Panju S.
        • Brian J.
        • Dupuis A.
        • Anagnostou E.
        • Kushki A.
        Atypical sympathetic arousal in children with autism spectrum disorder and its association with anxiety symptomatology.
        Mol. Autism. 2015; 6: 64
        • Rahman A.
        • Hasan A.U.
        • Nishiyama A.
        • Kobori H.
        Altered circadian timing system-mediated non-dipping pattern of blood pressure and associated cardiovascular disorders in metabolic and kidney diseases.
        Int. J. Mol. Sci. 2018; 19
        • Reppert S.M.
        • Weaver D.R.
        Coordination of circadian timing in mammals.
        Nature. 2002; 418: 935-941
        • Rusak B.
        • Robertson H.A.
        • Wisden W.
        • Hunt S.P.
        Light pulses that shift rhythms induce gene expression in the suprachiasmatic nucleus.
        Science. 1990; 248: 1237-1240
        • Santos C.Y.
        • Machan J.T.
        • Wu W.C.
        • Snyder P.J.
        Autonomic cardiac function in preclinical Alzheimer's disease.
        J. Alzheimers Dis. 2017; 59: 1057-1065
        • Saper C.B.
        The central circadian timing system.
        Curr. Opin. Neurobiol. 2013; 23: 747-751
        • Schroeder A.
        • Loh D.H.
        • Jordan M.C.
        • Roos K.P.
        • Colwell C.S.
        Circadian regulation of cardiovascular function: a role for vasoactive intestinal peptide.
        Am. J. Physiol. Heart Circ. Physiol. 2011; 300: H241-H250
        • Schwartz J.A.
        • Portnoy J.
        Lower catecholamine activity is associated with greater levels of anger in adults.
        Int. J. Psychophysiol. 2017; 120: 33-41
        • Smolensky M.H.
        • Hermida R.C.
        • Reinberg A.
        • Sackett-Lundeen L.
        • Portaluppi F.
        Circadian disruption: new clinical perspective of disease pathology and basis for chronotherapeutic intervention.
        Chronobiol. Int. 2016; 33: 1101-1119
        • Sofia R.D.
        • Salama A.I.
        Circadian rhythm for experimentally-induced aggressive behavior in mice.
        Life Sci. 1970; 9: 331-338
        • Stotz-Potter E.H.
        • Willis L.R.
        • Dimicco J.A.
        Muscimol acts in dorsomedial but not paraventricular hypothalamic nucleus to suppress cardiovascular effects of stress.
        J. Neurosci. 1996; 16: 1173-1179
        • Takeda N.
        • Maemura K.
        Circadian clock and the onset of cardiovascular events.
        Hypertens. Res. 2016; 39: 383-390
        • Thosar S.S.
        • Butler M.P.
        • Shea S.A.
        Role of the circadian system in cardiovascular disease.
        J. Clin. Invest. 2018; 128: 2157-2167
        • Todd W.D.
        • Gall A.J.
        • Weiner J.A.
        • Blumberg M.S.
        Distinct retinohypothalamic innervation patterns predict the developmental emergence of species-typical circadian phase preference in nocturnal Norway rats and diurnal nile grass rats.
        J. Comp. Neurol. 2012; 520: 3277-3292
        • Todd W.D.
        • Fenselau H.
        • Wang J.L.
        • Zhang R.
        • Machado N.L.
        • Venner A.
        • Broadhurst R.Y.
        • Kaur S.
        • Lynagh T.
        • Olson D.P.
        • Lowell B.B.
        • Fuller P.M.
        • Saper C.B.
        A hypothalamic circuit for the circadian control of aggression.
        Nat. Neurosci. 2018; 21: 717-724
        • Tornatzky W.
        • Cole J.C.
        • Miczek K.A.
        Recurrent aggressive episodes entrain ultradian heart rate and core temperature rhythms.
        Physiol. Behav. 1998; 63: 845-853
        • Toth M.
        • Mikics E.
        • Tulogdi A.
        • Aliczki M.
        • Haller J.
        Post-weaning social isolation induces abnormal forms of aggression in conjunction with increased glucocorticoid and autonomic stress responses.
        Horm. Behav. 2011; 60: 28-36
        • Tsuji H.
        • Venditti F.J.,.J.R.
        • Manders E.S.
        • Evans J.C.
        • Larson M.G.
        • Feldman C.L.
        • Levy D.
        Reduced heart rate variability and mortality risk in an elderly cohort. The Framingham heart study.
        Circulation. 1994; 90: 878-883
        • Tsuji H.
        • Larson M.G.
        • Venditti Jr., F.J.
        • Manders E.S.
        • Evans J.C.
        • Feldman C.L.
        • Levy D.
        Impact of reduced heart rate variability on risk for cardiac events. The Framingham heart study.
        Circulation. 1996; 94: 2850-2855
        • Tye S.
        • Van Voorhees E.
        • Hu C.
        • Lineberry T.
        Preclinical perspectives on posttraumatic stress disorder criteria in DSM-5.
        Harv. Rev. Psychiatry. 2015; 23: 51-58
        • Ulmer C.S.
        • Hall M.H.
        • Dennis P.A.
        • Beckham J.C.
        • Germain A.
        Posttraumatic stress disorder diagnosis is associated with reduced parasympathetic activity during sleep in US veterans and military service members of the Iraq and Afghanistan wars.
        Sleep. 2018; 41
        • Vale W.
        • Spiess J.
        • Rivier C.
        • Rivier J.
        Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin.
        Science. 1981; 213: 1394-1397
        • Verrier R.L.
        • Josephson M.E.
        Impact of sleep on arrhythmogenesis.
        Circ. Arrhythm. Electrophysiol. 2009; 2: 450-459
        • Verrier R.L.
        • Tan A.
        Heart rate, autonomic markers, and cardiac mortality.
        Heart Rhythm. 2009; 6: S68-S75
        • Vrang N.
        • Larsen P.J.
        • Mikkelsen J.D.
        Direct projection from the suprachiasmatic nucleus to hypophysiotrophic corticotropin-releasing factor immunoreactive cells in the paraventricular nucleus of the hypothalamus demonstrated by means of Phaseolus vulgaris-leucoagglutinin tract tracing.
        Brain Res. 1995; 684: 61-69
        • Vujovic N.
        • Gooley J.J.
        • Jhou T.C.
        • Saper C.B.
        Projections from the subparaventricular zone define four channels of output from the circadian timing system.
        J. Comp. Neurol. 2015; 523: 2714-2737
        • Warren W.S.
        • Champney T.H.
        • Cassone V.M.
        The suprachiasmatic nucleus controls the circadian rhythm of heart rate via the sympathetic nervous system.
        Physiol. Behav. 1994; 55: 1091-1099
        • Watts A.G.
        • Swanson L.W.
        Efferent projections of the suprachiasmatic nucleus: II. Studies using retrograde transport of fluorescent dyes and simultaneous peptide immunohistochemistry in the rat.
        J. Comp. Neurol. 1987; 258: 230-252
        • Watts A.G.
        • Swanson L.W.
        • Sanchez-Watts G.
        Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat.
        J. Comp. Neurol. 1987; 258: 204-229
        • Welsh D.K.
        • Logothetis D.E.
        • Meister M.
        • Reppert S.M.
        Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms.
        Neuron. 1995; 14: 697-706
        • Whitnall M.H.
        Regulation of the hypothalamic corticotropin-releasing hormone neurosecretory system.
        Prog. Neurobiol. 1993; 40: 573-629
        • Yang C.F.
        • Chiang M.C.
        • Gray D.C.
        • Prabhakaran M.
        • Alvarado M.
        • Juntti S.A.
        • Unger E.K.
        • Wells J.A.
        • Shah N.M.
        Sexually dimorphic neurons in the ventromedial hypothalamus govern mating in both sexes and aggression in males.
        Cell. 2013; 153: 896-909
        • Yang T.
        • Yang C.F.
        • Chizari M.D.
        • Maheswaranathan N.
        • Burke Jr., K.J.
        • Borius M.
        • Inoue S.
        • Chiang M.C.
        • Bender K.J.
        • Ganguli S.
        • Shah N.M.
        Social control of hypothalamus-mediated male aggression.
        Neuron. 2017; 95: 955-970 e4