Advertisement

Autonomic nerves and circadian control of renal function

  • Bryan K. Becker
    Affiliations
    Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, United States of America
    Search for articles by this author
  • Dingguo Zhang
    Affiliations
    Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, United States of America
    Search for articles by this author
  • Reham Soliman
    Affiliations
    Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, United States of America
    Search for articles by this author
  • David M. Pollock
    Correspondence
    Corresponding author at: Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, 1720 2nd Ave. S, Birmingham, AL 35294, United States of America.
    Affiliations
    Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, United States of America
    Search for articles by this author
Published:January 10, 2019DOI:https://doi.org/10.1016/j.autneu.2019.01.003

      Abstract

      Cardiovascular and renal physiology follow strong circadian rhythms. For instance, renal excretion of solutes and water is higher during the active period compared to the inactive period, and blood pressure peaks early in the beginning of the active period of both diurnal and nocturnal animals. The control of these rhythms is largely dependent on the expression of clock genes both in the central nervous system and within peripheral organs themselves. Although it is understood that the central and peripheral clocks interact and communicate, few studies have explored the specific mechanism by which various organ systems within the body are coordinated to control physiological processes. The renal sympathetic nervous innervation has long been known to have profound effects on renal function, and because the sympathetic nervous system follows strong circadian rhythms, it is likely that autonomic control of the kidney plays an integral role in modulating renal circadian function. This review highlights studies that provide insight into this interaction, discusses areas lacking clarity, and suggests the potential for future work to explore the role of renal autonomics in areas such as blood pressure control and chronic kidney disease.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Autonomic Neuroscience: Basic and Clinical
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abboud F.
        • Kumar R.
        Obstructive sleep apnea and insight into mechanisms of sympathetic overactivity.
        J. Clin. Invest. 2014; 124: 1454-1457
        • Acelajado M.C.
        • Pisoni R.
        • Dudenbostel T.
        • Oparil S.
        • Calhoun D.A.
        • Glasser S.P.
        Both morning and evening dosing of nebivolol reduces trough mean blood pressure surge in hypertensive patients.
        J. Am. Soc. Hypertens. 2012; 6: 66-72
        • Agarwal R.
        • Kariyanna S.S.
        • Light R.P.
        Prognostic value of circadian blood pressure variation in chronic kidney disease.
        Am. J. Nephrol. 2009; 30: 547-553
        • Asmar R.
        • Gosse P.
        • Quere S.
        • Achouba A.
        Efficacy of morning and evening dosing of amlodipine/valsartan combination in hypertensive patients uncontrolled by 5 mg of amlodipine.
        Blood Press. Monit. 2011; 16: 80-86
        • Baker S.E.
        • Limberg J.K.
        • Ranadive S.M.
        • Joyner M.J.
        Neurovascular control of blood pressure is influenced by aging, sex, and sex hormones.
        Am. J. Phys. Regul. Integr. Comp. Phys. 2016; 311: R1271-R1275
        • Bakris G.L.
        • Townsend R.R.
        • Liu M.
        • Cohen S.A.
        • D'Agostino R.
        • Flack J.M.
        • Kandzari D.E.
        • Katzen B.T.
        • Leon M.B.
        • Mauri L.
        • Negoita M.
        • O'Neill W.W.
        • Oparil S.
        • Rocha-Singh K.
        • Bhatt D.L.
        • Investigators S.H.-.
        Impact of renal denervation on 24-hour ambulatory blood pressure: results from SYMPLICITY HTN-3.
        J. Am. Coll. Cardiol. 2014; 64: 1071-1078
        • Banek C.T.
        • Knuepfer M.M.
        • Foss J.D.
        • Fiege J.K.
        • Asirvatham-Jeyaraj N.
        • Van Helden D.
        • Shimizu Y.
        • Osborn J.W.
        Resting afferent renal nerve discharge and renal inflammation: elucidating the role of afferent and efferent renal nerves in deoxycorticosterone acetate salt hypertension.
        Hypertension. 2016; 68: 1415-1423
        • Bartter F.C.
        • Delea C.S.
        • Baker W.
        • Halberg F.
        • Lee J.K.
        Chronobiology in the diagnosis and treatment of mesor-hypertension.
        Chronobiologia. 1976; 3: 199-213
        • Becker B.K.
        • Feagans A.C.
        • Chen D.
        • Kasztan M.
        • Jin C.
        • Speed J.S.
        • Pollock J.S.
        • Pollock D.M.
        Renal denervation attenuates hypertension but not salt sensitivity in ETB receptor-deficient rats.
        Am. J. Phys. Regul. Integr. Comp. Phys. 2017; 313: R425-R437
        • Bhatt D.L.
        • Kandzari D.E.
        • O'Neill W.W.
        • D'Agostino R.
        • Flack J.M.
        • Katzen B.T.
        • Leon M.B.
        • Liu M.
        • Mauri L.
        • Negoita M.
        • Cohen S.A.
        • Oparil S.
        • Rocha-Singh K.
        • Townsend R.R.
        • Bakris G.L.
        • Investigators SH
        A controlled trial of renal denervation for resistant hypertension.
        N. Engl. J. Med. 2014; 370: 1393-1401
        • Centers for Disease Control and Prevention
        Chronic Kidney Disease Surveillance System—United States.
        2014
        • Charkoudian N.
        • Gusman E.
        • Joyner M.J.
        • Wallin B.G.
        • Osborn J.
        Integrative mechanisms of blood pressure regulation in humans and rats: cross-species similarities.
        Am. J. Phys. Regul. Integr. Comp. Phys. 2010; 298: R755-R759
        • Converse Jr., R.L.
        • Jacobsen T.N.
        • Toto R.D.
        • Jost C.M.
        • Cosentino F.
        • Fouad-Tarazi F.
        • Victor R.G.
        Sympathetic overactivity in patients with chronic renal failure.
        N. Engl. J. Med. 1992; 327: 1912-1918
        • Cote I.
        • Toklu H.Z.
        • Green S.M.
        • Morgan D.
        • Carter C.S.
        • Tumer N.
        • Scarpace P.J.
        Limiting feeding to the active phase reduces blood pressure without the necessity of caloric reduction or fat mass loss.
        Am. J. Phys. Regul. Integr. Comp. Phys. 2018; 315: R751-R758
        • de la Sierra A.
        • Gorostidi M.
        • Banegas J.R.
        • Segura J.
        • de la Cruz J.J.
        • Ruilope L.M.
        Nocturnal hypertension or nondipping: which is better associated with the cardiovascular risk profile?.
        Am. J. Hypertens. 2014; 27: 680-687
        • de la Sierra A.
        • Pareja J.
        • Armario P.
        • Barrera A.
        • Yun S.
        • Vazquez S.
        • Sans L.
        • Pascual J.
        • Oliveras A.
        Renal denervation vs. spironolactone in resistant hypertension: effects on circadian patterns and blood pressure variability.
        Am. J. Hypertens. 2017; 30: 37-41
        • Dhaun N.
        • Moorhouse R.
        • MacIntyre I.M.
        • Melville V.
        • Oosthuyzen W.
        • Kimmitt R.A.
        • Brown K.E.
        • Kennedy E.D.
        • Goddard J.
        • Webb D.J.
        Diurnal variation in blood pressure and arterial stiffness in chronic kidney disease: the role of endothelin-1.
        Hypertension. 2014; 64: 296-304
        • Diedrich A.
        • Jordan J.
        • Tank J.
        • Shannon J.R.
        • Robertson R.
        • Luft F.C.
        • Robertson D.
        • Biaggioni I.
        The sympathetic nervous system in hypertension: assessment by blood pressure variability and ganglionic blockade.
        J. Hypertens. 2003; 21: 1677-1686
        • Douma L.G.
        • Gumz M.L.
        Circadian clock-mediated regulation of blood pressure.
        Free Radic. Biol. Med. 2018; 119: 108-114
        • Elmasry A.
        • Lindberg E.
        • Hedner J.
        • Janson C.
        • Boman G.
        Obstructive sleep apnoea and urine catecholamines in hypertensive males: a population-based study.
        Eur. Respir. J. 2002; 19: 511-517
        • Farmer C.K.
        • Goldsmith D.J.
        • Cox J.
        • Dallyn P.
        • Kingswood J.C.
        • Sharpstone P.
        An investigation of the effect of advancing uraemia, renal replacement therapy and renal transplantation on blood pressure diurnal variability.
        Nephrol. Dial. Transplant. 1997; 12: 2301-2307
        • Flack J.M.
        • Calhoun D.
        • Schiffrin E.L.
        The new ACC/AHA hypertension guidelines for the prevention, detection, evaluation, and management of high blood pressure in adults.
        Am. J. Hypertens. 2018; 31: 133-135
        • Gamble K.L.
        • Berry R.
        • Frank S.J.
        • Young M.E.
        Circadian clock control of endocrine factors.
        Nat. Rev. Endocrinol. 2014; 10: 466-475
        • Gosse P.
        • Cremer A.
        • Pereira H.
        • Bobrie G.
        • Chatellier G.
        • Chamontin B.
        • Courand P.Y.
        • Delsart P.
        • Denolle T.
        • Dourmap C.
        • Ferrari E.
        • Girerd X.
        • Michel Halimi J.
        • Herpin D.
        • Lantelme P.
        • Monge M.
        • Mounier-Vehier C.
        • Mourad J.J.
        • Ormezzano O.
        • Ribstein J.
        • Rossignol P.
        • Sapoval M.
        • Vaisse B.
        • Zannad F.
        • Azizi M.
        Twenty-four-hour blood pressure monitoring to predict and assess impact of renal denervation: the DENERHTN study (renal denervation for hypertension).
        Hypertension. 2017; 69: 494-500
        • Grassi G.
        • Bombelli M.
        • Seravalle G.
        • Dell'Oro R.
        • Quarti-Trevano F.
        Diurnal blood pressure variation and sympathetic activity.
        Hypertens. Res. 2010; 33: 381-385
        • Grassi G.
        • Mark A.
        • Esler M.
        The sympathetic nervous system alterations in human hypertension.
        Circ. Res. 2015; 116: 976-990
        • Gumz M.L.
        • Stow L.R.
        • Lynch I.J.
        • Greenlee M.M.
        • Rudin A.
        • Cain B.D.
        • Weaver D.R.
        • Wingo C.S.
        The circadian clock protein period 1 regulates expression of the renal epithelial sodium channel in mice.
        J. Clin. Invest. 2009; 119: 2423-2434
        • Gumz M.L.
        • Cheng K.Y.
        • Lynch I.J.
        • Stow L.R.
        • Greenlee M.M.
        • Cain B.D.
        • Wingo C.S.
        Regulation of alphaENaC expression by the circadian clock protein period 1 in mpkCCD(c14) cells.
        Biochim. Biophys. Acta. 2010; 1799: 622-629
        • Hart E.C.
        • Charkoudian N.
        Sympathetic neural regulation of blood pressure: influences of sex and aging.
        Physiology (Bethesda). 2014; 29: 8-15
        • Hart E.C.
        • Head G.A.
        • Carter J.R.
        • Wallin B.G.
        • May C.N.
        • Hamza S.M.
        • Hall J.E.
        • Charkoudian N.
        • Osborn J.W.
        Recording sympathetic nerve activity in conscious humans and other mammals: guidelines and the road to standardization.
        Am. J. Physiol. Heart Circ. Physiol. 2017; 312: H1031-H1051
        • Hausberg M.
        Sympathetic nerve activity in end-stage renal disease.
        Circulation. 2002; 106: 1974-1979
        • Heistad D.D.
        • Marcus M.L.
        • Gross P.M.
        Effects of sympathetic nerves on cerebral vessels in dog, cat, and monkey.
        Am. J. Phys. 1978; 235: H544-H552
        • Hering D.
        • Mahfoud F.
        • Walton A.S.
        • Krum H.
        • Lambert G.W.
        • Lambert E.A.
        • Sobotka P.A.
        • Bohm M.
        • Cremers B.
        • Esler M.D.
        • Schlaich M.P.
        Renal denervation in moderate to severe CKD.
        J. Am. Soc. Nephrol. 2012; 23: 1250-1257
        • Hermida R.C.
        • Ayala D.E.
        • Mojon A.
        • Fernandez J.R.
        Decreasing sleep-time blood pressure determined by ambulatory monitoring reduces cardiovascular risk.
        J. Am. Coll. Cardiol. 2011; 58: 1165-1173
        • Hermida R.C.
        • Smolensky M.H.
        • Ayala D.E.
        • Fernandez J.R.
        • Moya A.
        • Crespo J.J.
        • Mojon A.
        • Rios M.T.
        • Fabbian F.
        • Portaluppi F.
        Abnormalities in chronic kidney disease of ambulatory blood pressure 24 h patterning and normalization by bedtime hypertension chronotherapy.
        Nephrol. Dial. Transplant. 2014; 29: 1160-1167
        • Hermida R.C.
        • Ayala D.E.
        • Smolensky M.H.
        • Fernandez J.R.
        • Mojon A.
        • Portaluppi F.
        Chronotherapy with conventional blood pressure medications improves management of hypertension and reduces cardiovascular and stroke risks.
        Hypertens. Res. 2016; 39: 277-292
        • Hermida R.C.
        • Ayala D.E.
        • Fernandez J.R.
        • Mojon A.
        • Smolensky M.H.
        Hypertension: new perspective on its definition and clinical management by bedtime therapy substantially reduces cardiovascular disease risk.
        Eur. J. Clin. Investig. 2018; 48e12909
        • Horowitz B.
        • Miskulin D.
        • Zager P.
        Epidemiology of hypertension in CKD.
        Adv. Chronic Kidney Dis. 2015; 22: 88-95
        • Johns E.J.
        • Kopp U.C.
        • DiBona G.F.
        Neural control of renal function.
        Compr. Physiol. 2011; 1: 731-767
        • Johnston J.G.
        • Pollock D.M.
        Circadian regulation of renal function.
        Free Radic. Biol. Med. 2018; 119: 93-107
        • Joyner M.J.
        • Wallin B.G.
        • Charkoudian N.
        Sex differences and blood pressure regulation in humans.
        Exp. Physiol. 2016; 101: 349-355
        • Kalsbeek A.
        • Perreau-Lenz S.
        • Buijs R.M.
        A network of (autonomic) clock outputs.
        Chronobiol. Int. 2006; 23: 521-535
        • Kandzari D.E.
        • Böhm M.
        • Mahfoud F.
        • Townsend R.R.
        • Weber M.A.
        • Pocock S.
        • Tsioufis K.
        • Tousoulis D.
        • Choi J.W.
        • East C.
        • Brar S.
        • Cohen S.A.
        • Fahy M.
        • Pilcher G.
        • Kario K.
        • Aoki J.
        • Batson B.
        • Böhm M.
        • Choi J.W.
        • Cohen D.L.
        • Dangas G.
        • David S.
        • Davies J.
        • Devireddy C.M.
        • Kandzari D.
        • Kario K.
        • Lee D.P.
        • Lurz P.C.
        • Papademetriou V.
        • Patel M.
        • Patel K.
        • Schmieder R.E.
        • Sharp A.S.P.
        • Singh J.
        • Tsioufis K.
        • Walton A.
        • Weber T.
        • Weil J.
        • Zeller T.
        • Ziada K.
        • Tanabe K.
        • Wilkins R.
        • Mahfoud F.
        • East C.
        • Wilensky R.
        • Contreras J.
        • Steigerwalt S.
        • Chapman N.
        • Lea J.P.
        • Reedus D.
        • Hoshide S.
        • Ma A.
        • Fengler K.
        • Li P.
        • Svetkey L.
        • Rao A.
        • Schmid A.
        • Watkinson A.F.
        • Brown A.
        • Tousoulis D.
        • Hopper I.
        • Suppan M.
        • Agdirlioglu T.
        • Noory E.
        • Chasen C.
        Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomised trial.
        Lancet. 2018; 391: 2346-2355
        • Kario K.
        Nocturnal hypertension: new technology and evidence.
        Hypertension. 2018; 71: 997-1009
        • Katayama T.
        • Sueta D.
        • Kataoka K.
        • Hasegawa Y.
        • Koibuchi N.
        • Toyama K.
        • Uekawa K.
        • Mingjie M.
        • Nakagawa T.
        • Maeda M.
        • Ogawa H.
        • Kim-Mitsuyama S.
        Long-term renal denervation normalizes disrupted blood pressure circadian rhythm and ameliorates cardiovascular injury in a rat model of metabolic syndrome.
        J. Am. Heart Assoc. 2013; 2e000197
        • Katholi R.E.
        • McCann W.P.
        • Woods W.T.
        Intrarenal adenosine produces hypertension via renal nerves in the one-kidney, one clip rat.
        Hypertension. 1985; 7: I88-I93
        • Kopp U.C.
        Endothelin in the control of renal sympathetic nerve activity.
        Contrib. Nephrol. 2011; 172: 107-119
        • Kopp U.C.
        • Cicha M.Z.
        • Smith L.A.
        Differential effects of endothelin on activation of renal mechanosensory nerves: stimulatory in high-sodium diet and inhibitory in low-sodium diet.
        Am. J. Phys. Regul. Integr. Comp. Phys. 2006; 291: R1545-R1556
        • Kopp U.C.
        • Cicha M.Z.
        • Smith L.A.
        • Mulder J.
        • Hokfelt T.
        Renal sympathetic nerve activity modulates afferent renal nerve activity by PGE2-dependent activation of alpha1- and alpha2-adrenoceptors on renal sensory nerve fibers.
        Am. J. Phys. Regul. Integr. Comp. Phys. 2007; 293: R1561-R1572
        • Kopp U.C.
        • Grisk O.
        • Cicha M.Z.
        • Smith L.A.
        • Steinbach A.
        • Schluter T.
        • Mahler N.
        • Hokfelt T.
        Dietary sodium modulates the interaction between efferent renal sympathetic nerve activity and afferent renal nerve activity: role of endothelin.
        Am. J. Phys. Regul. Integr. Comp. Phys. 2009; 297: R337-R351
        • Kopp U.
        • Cicha M.
        • Smith L.
        Interaction between endothelin (ET) and norepinephrine (NE) in the activation of renal sensory nerves.
        FASEB J. 2010; 24: 792-794
        • Krum H.
        • Schlaich M.
        • Whitbourn R.
        • Sobotka P.A.
        • Sadowski J.
        • Bartus K.
        • Kapelak B.
        • Walton A.
        • Sievert H.
        • Thambar S.
        • Abraham W.T.
        • Esler M.
        Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study.
        Lancet. 2009; 373: 1275-1281
        • Lim K.
        • Burke S.L.
        • Armitage J.A.
        • Head G.A.
        Comparison of blood pressure and sympathetic activity of rabbits in their home cage and the laboratory environment.
        Exp. Physiol. 2012; 97: 1263-1271
        • Lubanda J.C.
        • Chochola M.
        • Mlcek M.
        • Neuzil P.
        • Marek J.
        • Havranek S.
        • Kuchynkova S.
        • Fingrova Z.
        • Huang K.A.
        • Linhart A.
        The effect of renal denervation in an experimental model of chronic renal insufficiency, the REmnant kidney Denervation In Pigs study (REDIP study).
        J. Transl. Med. 2017; 15: 215
        • Macchiarulo C.
        • Pieri R.
        • Mitolo D.C.
        • Pirrelli A.
        Management of antihypertensive treatment with Lisinopril: a chronotherapeutic approach.
        Eur. Rev. Med. Pharmacol. Sci. 1999; 3: 269-275
        • McCambridge J.
        • Witton J.
        • Elbourne D.R.
        Systematic review of the Hawthorne effect: new concepts are needed to study research participation effects.
        J. Clin. Epidemiol. 2014; 67: 267-277
        • Mizuno M.
        • Fukuda M.
        • Miura T.
        • Wakamatsu T.
        • Naito T.
        • Sato R.
        • Togawa H.
        • Sasakawa Y.
        • Tomonari T.
        • Ono M.
        • Kato Y.
        • Ichikawa T.
        • Shirasawa Y.
        • Ito A.
        • Yoshida A.
        • Kimura G.
        Morning hypertension in chronic kidney disease is sustained type, but not surge type.
        Blood Press. Monit. 2012; 17: 20-23
        • Mochel J.P.
        • Fink M.
        • Bon C.
        • Peyrou M.
        • Bieth B.
        • Desevaux C.
        • Deurinck M.
        • Giraudel J.M.
        • Danhof M.
        Influence of feeding schedules on the chronobiology of renin activity, urinary electrolytes and blood pressure in dogs.
        Chronobiol. Int. 2014; 31: 715-730
        • Mojon A.
        • Ayala D.E.
        • Pineiro L.
        • Otero A.
        • Crespo J.J.
        • Moya A.
        • Boveda J.
        • de Lis J.P.
        • Fernandez J.R.
        • Hermida R.C.
        • Hygia Project I.
        Comparison of ambulatory blood pressure parameters of hypertensive patients with and without chronic kidney disease.
        Chronobiol. Int. 2013; 30: 145-158
        • Nikolaeva S.
        • Ansermet C.
        • Centeno G.
        • Pradervand S.
        • Bize V.
        • Mordasini D.
        • Henry H.
        • Koesters R.
        • Maillard M.
        • Bonny O.
        • Tokonami N.
        • Firsov D.
        Nephron-specific deletion of circadian clock gene Bmal1 alters the plasma and renal metabolome and impairs drug disposition.
        J. Am. Soc. Nephrol. 2016; 27: 2997-3004
        • Pinkham M.I.
        • Guild S.J.
        • Malpas S.C.
        • Barrett C.J.
        Effects of sex and ovarian hormones on the initial renal sympathetic nerve activity response to myocardial infarction.
        Exp. Physiol. 2012; 97: 1040-1053
        • Pinkham M.I.
        • Whalley G.A.
        • Guild S.J.
        • Malpas S.C.
        • Barrett C.J.
        Arterial baroreceptor reflex control of renal sympathetic nerve activity following chronic myocardial infarction in male, female, and ovariectomized female rats.
        Am. J. Phys. Regul. Integr. Comp. Phys. 2015; 309: R169-R178
        • Portaluppi F.
        • Montanari L.
        • Ferlini M.
        • Gilli P.
        Altered circadian rhythms of blood pressure and heart rate in non-hemodialysis chronic renal failure.
        Chronobiol. Int. 1990; 7: 321-327
        • Portaluppi F.
        • Montanari L.
        • Massari M.
        • Di Chiara V.
        • Capanna M.
        Loss of nocturnal decline of blood pressure in hypertension due to chronic renal failure.
        Am. J. Hypertens. 1991; 4: 20-26
        • Rahman M.
        • Greene T.
        • Phillips R.A.
        • Agodoa L.Y.
        • Bakris G.L.
        • Charleston J.
        • Contreras G.
        • Gabbai F.
        • Hiremath L.
        • Jamerson K.
        • Kendrick C.
        • Kusek J.W.
        • Lash J.P.
        • Lea J.
        • Miller 3rd, E.R.
        • Rostand S.
        • Toto R.
        • Wang X.
        • Wright Jr., J.T.
        • Appel L.J.
        A trial of 2 strategies to reduce nocturnal blood pressure in blacks with chronic kidney disease.
        Hypertension. 2013; 61: 82-88
        • Richards J.
        • Greenlee M.M.
        • Jeffers L.A.
        • Cheng K.Y.
        • Guo L.
        • Eaton D.C.
        • Gumz M.L.
        Inhibition of alphaENaC expression and ENaC activity following blockade of the circadian clock-regulatory kinases CK1delta/epsilon.
        Am. J. Physiol. Ren. Physiol. 2012; 303: F918-F927
        • Salman I.M.
        • Hildreth C.M.
        • Phillips J.K.
        Chronic kidney disease impairs renal nerve and haemodynamic reflex responses to vagal afferent input through a central mechanism.
        Auton. Neurosci. 2017; 204: 65-73
        • Solocinski K.
        • Gumz M.L.
        The circadian clock in the regulation of renal rhythms.
        J. Biol. Rhythm. 2015; 30: 470-486
        • Somers V.K.
        • Dyken M.E.
        • Clary M.P.
        • Abboud F.M.
        Sympathetic neural mechanisms in obstructive sleep apnea.
        J. Clin. Invest. 1995; 96: 1897-1904
        • Speed J.S.
        • Hyndman K.A.
        • Roth K.
        • Heimlich J.B.
        • Kasztan M.
        • Fox B.M.
        • Johnston J.G.
        • Becker B.K.
        • Jin C.
        • Gamble K.L.
        • Young M.E.
        • Pollock J.S.
        • Pollock D.M.
        High dietary sodium causes dyssynchrony of the renal molecular clock in rats.
        Am. J. Physiol. Ren. Physiol. 2018; 314: F89-F98
        • Staessen J.A.
        • Bieniaszewski L.
        • O'Brien E.
        • Gosse P.
        • Hayashi H.
        • Imai Y.
        • Kawasaki T.
        • Otsuka K.
        • Palatini P.
        • Thijs L.
        • Fagard R.
        Nocturnal blood pressure fall on ambulatory monitoring in a large international database. The ‘Ad Hoc’ Working Group.
        Hypertension. 1997; 29: 30-39
        • Stella A.
        • Zanchetti A.
        Functional role of renal afferents.
        Physiol. Rev. 1991; 71: 659-682
        • Stocker S.D.
        • Muntzel M.S.
        Recording sympathetic nerve activity chronically in rats: surgery techniques, assessment of nerve activity, and quantification.
        Am. J. Physiol. Heart Circ. Physiol. 2013; 305: H1407-H1416
        • Thomas S.J.
        • Booth 3rd, J.N.
        • Bromfield S.G.
        • Seals S.R.
        • Spruill T.M.
        • Ogedegbe G.
        • Kidambi S.
        • Shimbo D.
        • Calhoun D.
        • Muntner P.
        Clinic and ambulatory blood pressure in a population-based sample of African Americans: the Jackson Heart Study.
        J. Am. Soc. Hypertens. 2017; 11e205
        • Tofe Povedano S.
        • Garcia De La Villa B.
        24-Hour and nighttime blood pressures in type 2 diabetic hypertensive patients following morning or evening administration of olmesartan.
        J. Clin. Hypertens. (Greenwich). 2009; 11: 426-431
        • Tokonami N.
        • Mordasini D.
        • Pradervand S.
        • Centeno G.
        • Jouffe C.
        • Maillard M.
        • Bonny O.
        • Gachon F.
        • Gomez R.A.
        • Sequeira-Lopez M.L.
        • Firsov D.
        Local renal circadian clocks control fluid-electrolyte homeostasis and BP.
        J. Am. Soc. Nephrol. 2014; 25: 1430-1439
        • Townsend R.R.
        • Mahfoud F.
        • Kandzari D.E.
        • Kario K.
        • Pocock S.
        • Weber M.A.
        • Ewen S.
        • Tsioufis K.
        • Tousoulis D.
        • Sharp A.S.P.
        • Watkinson A.F.
        • Schmieder R.E.
        • Schmid A.
        • Choi J.W.
        • East C.
        • Walton A.
        • Hopper I.
        • Cohen D.L.
        • Wilensky R.
        • Lee D.P.
        • Ma A.
        • Devireddy C.M.
        • Lea J.P.
        • Lurz P.C.
        • Fengler K.
        • Davies J.
        • Chapman N.
        • Cohen S.A.
        • DeBruin V.
        • Fahy M.
        • Jones D.E.
        • Rothman M.
        • Böhm M.
        • Aoki J.
        • Batson B.
        • Böhm M.
        • Choi J.W.
        • Cohen D.L.
        • Dangas G.
        • David S.
        • Davies J.
        • Devireddy C.M.
        • Kandzari D.
        • Kario K.
        • Lee D.P.
        • Lurz P.C.
        • Patel M.
        • Patel K.
        • Schmieder R.E.
        • Sharp A.S.P.
        • Singh J.
        • Tsioufis K.
        • Walton A.
        • Weber T.
        • Weil J.
        • Zeller T.
        • Ziada K.
        • Tanabe K.
        • Wilkins R.
        • Mahfoud F.
        • East C.
        • Wilensky R.
        • Contreras J.
        • Steigerwalt S.
        • Chapman N.
        • Lea J.P.
        • Reedus D.
        • Hoshide S.
        • Ma A.
        • Fengler K.
        • Svetkey L.
        • Rao A.
        • Schmid A.
        • Watkinson A.F.
        • Brown A.
        • Tousoulis D.
        • Hopper I.
        • Suppan M.
        • Agdirlioglu T.
        • Noory E.
        • Chasen C.
        Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial.
        Lancet. 2017; 390: 2160-2170
        • Tuohy S.T.
        • Kyvelou S.M.
        • Gleeson P.J.
        • Daniels F.B.
        • Ryan L.A.
        • Lappin D.W.
        • O'Donnell M.J.
        • Sharif F.
        The effect of renal sympathetic denervation on nocturnal dipping in patients with resistant hypertension; observational data from a tertiary referral centre in the Republic of Ireland.
        Ir. J. Med. Sci. 2016; 185: 635-641
        • Tzafriri A.R.
        • Mahfoud F.
        • Keating J.H.
        • Markham P.M.
        • Spognardi A.
        • Wong G.
        • Fuimaono K.
        • Bohm M.
        • Edelman E.R.
        Innervation patterns may limit response to endovascular renal denervation.
        J. Am. Coll. Cardiol. 2014; 64: 1079-1087
        • Uzu T.
        • Ishikawa K.
        • Fujii T.
        • Nakamura S.
        • Inenaga T.
        • Kimura G.
        Sodium restriction shifts circadian rhythm of blood pressure from nondipper to dipper in essential hypertension.
        Circulation. 1997; 96: 1859-1862
        • Veiga G.L.
        • Nishi E.E.
        • Estrela H.F.
        • Lincevicius G.S.
        • Gomes G.N.
        • Simoes Sato A.Y.
        • Campos R.R.
        • Bergamaschi C.T.
        Total renal denervation reduces sympathoexcitation to different target organs in a model of chronic kidney disease.
        Auton. Neurosci. 2017; 204: 81-87
        • Wehrwein E.A.
        • Orer H.S.
        • Barman S.M.
        Overview of the anatomy, physiology, and pharmacology of the autonomic nervous system.
        Compr. Physiol. 2016; 6: 1239-1278
        • Whelton P.K.
        • Carey R.M.
        • Aronow W.S.
        • Casey Jr., D.E.
        • Collins K.J.
        • Dennison Himmelfarb C.
        • DePalma S.M.
        • Gidding S.
        • Jamerson K.A.
        • Jones D.W.
        • MacLaughlin E.J.
        • Muntner P.
        • Ovbiagele B.
        • Smith Jr., S.C.
        • Spencer C.C.
        • Stafford R.S.
        • Taler S.J.
        • Thomas R.J.
        • Williams Sr., K.A.
        • Williamson J.D.
        • Wright Jr., J.T.
        2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines.
        J. Am. Coll. Cardiol. 2018; 71: 2199-2269
        • Whelton P.K.
        • Carey R.M.
        • Aronow W.S.
        • Casey Jr., D.E.
        • Collins K.J.
        • Dennison Himmelfarb C.
        • DePalma S.M.
        • Gidding S.
        • Jamerson K.A.
        • Jones D.W.
        • MacLaughlin E.J.
        • Muntner P.
        • Ovbiagele B.
        • Smith Jr., S.C.
        • Spencer C.C.
        • Stafford R.S.
        • Taler S.J.
        • Thomas R.J.
        • Williams Sr., K.A.
        • Williamson J.D.
        • Wright Jr., J.T.
        2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines.
        Hypertension. 2018; 71: e13-e115
        • Witte K.
        • Weisser K.
        • Neubeck M.
        • Mutschler E.
        • Lehmann K.
        • Hopf R.
        • Lemmer B.
        Cardiovascular effects, pharmacokinetics, and converting enzyme inhibition of enalapril after morning versus evening administration.
        Clin. Pharmacol. Ther. 1993; 54: 177-186
        • Zhang D.
        • Pollock D.M.
        Circadian regulation of kidney function: finding a role for Bmal1.
        Am. J. Physiol. Ren. Physiol. 2018; 314: F675-F678