Advertisement

Effect of Tityus serrulatus scorpion venom on isolated jejunum: A very useful tool to study the interaction between neurons in the enteric nervous system

      Highlights

      • The venom of the scorpion Tityus serrulatus induced contraction and relaxation of rat jejunum.
      • Tetrodotoxin increases the final portion of the contraction induced by the venom
      • Atropine blocks almost completely the contraction in the presence of tetrodotoxin
      • Venom can be an important tool for the study of neurotransmission in the enteric nervous system

      Abstract

      Scorpion envenomation is a public health problem in tropical and subtropical areas. In Brazil, Tityus serrulatus is the biggest cause of accidents with venomous animals. Tityus serrulatus venom causes symptoms related to a great activation of the autonomic system attributed to a massive release of sympathetic and parasympathetic mediators. This effect is attributed to the presence of toxins acting in Na+ and K+ ion channels, leading to an increase in cell excitability. Although gastrointestinal symptoms, like diarrhoea and sialorrhea, is observed in moderate to severe cases, little attention is given in clinical reports. Gastrointestinal motility is controlled by the enteric nervous system which is composed of a wide variety of interconnected neurons that are influenced by the sympathetic and parasympathetic nervous systems. Thus, this work aimed to characterize the effects of Tityus serrulatus venom on sympathetic and parasympathetic neurotransmission of rat jejunum, as well as to investigate possibles effects on other neurons of the enteric nervous system.
      To this, we verify the effects of Tityus serrulatus venom on the contractility of isolated rat jejunum through organ-bath experiments. We observed that venom can induce both contraction and relaxation. The contraction was partially inhibited by atropine (1 μM) and by suramin (0.1 mM) through tetrodotoxin-resistant and sensitive mechanisms. The relaxation was completely inhibited by 3 μM propranolol and partially inhibited by 1 μM phentolamine. Suramin induced a slowing of relaxation curve. Tetrodotoxin completely inhibits the relaxation induced by Tityus serrulatus venom, but the contraction curves were only partially reduced in their initial portion. The final part of the curve was largely enhanced by Tetrodotoxin. Atropine blocks almost completely the contraction curve in the presence of Tetrodotoxin. These results indicate that Tityus serrulatus venom induces the release of both excitatory (predominantly acetylcholine) and inhibitory (mainly noradrenaline) neurotransmitters.
      The effects of Tityus serrulatus venom on organ contractility was quite complex and seem to derive from a diffuse and nonspecific release of mediators from autonomic and enteric nervous systems. Further investigation of venom action and its isolated toxins can reveal important aspects to deepen our knowledge about the enteric nervous system transmission and the interaction between excitatory and inhibitory mediators as well as the physiological role of Na+ and K+ ion channels in gut motility.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Autonomic Neuroscience: Basic and Clinical
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bahloul M.
        • Chaari A.
        • Khlaf-Bouaziz N.
        • Hergafi L.
        • Ksibi H.
        • Kallel H.
        • Bouaziz M.
        Gastrointestinal manifestations in severe scorpion envenomation.
        Gastroenterol. Clin. Biol. 2005; 29: 1001-1005https://doi.org/10.1016/s0399-8320(05)88173-4
        • Bian X.
        • Ren J.
        • DeVries M.
        • et al.
        Peristalsis is impaired in the small intestine of mice lacking the P2X3 subunit.
        J. Physiol. 2003; 551: 309-322https://doi.org/10.1113/jphysiol.2003.044172
        • Bicalho A.F.
        • Guatimosim C.
        • Prado M.A.
        • Gomez M.
        • Romano-Silva M.
        Investigation of the modulation of glutamate release by sodium channels using neurotoxins.
        Neurosc. 2002; 113: 115-123https://doi.org/10.1016/s0306-4522(02)00139-2
        • Blandizzi C.
        Enteric alpha-2 adrenoceptors: pathophysiological implications in functional and inflammatory bowel disorders.
        Neurochem. Int. 2007; 51: 282-288https://doi.org/10.1016/j.neuint.2007.05.013
        • Blue D.R.
        • Bond R.A.
        • Adham N.
        • Delmendo R.
        • Michel A.D.
        • Eglen R.M.
        • Whiting R.L.
        • Clarke D.E.
        Antagonist characterization of atypical beta adrenoceptors in guinea pig ileum: blockade by alprenolol and dihydroalprenolol.
        J. Pharmacol. Exp. Ther. 1990; 252: 1034-1042
        • Borja-Oliveira C.R.
        • Pertinhez T.A.
        • Rodrigues-Simioni L.
        • Spisni A.
        Positive inotropic effects of Tityus cambridgei and T. serrulatus scorpion venoms on skeletal muscle.
        Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2009; 149: 404-408https://doi.org/10.1016/j.cbpc.2008.09.014
        • Burnstock G.
        Purinergic signalling in the gastrointestinal tract and related organs in health and disease.
        Purinergic Signal. 2014; 10: 3-50https://doi.org/10.1007/s11302-013-9397-9
        • Burnstock G.
        Purinergic signalling in the gut.
        in: Brierley S. Costa M. The Enteric Nervous System. Advances in Experimental Medicine and Biology. 891. Springer, Cham2016: 91-112https://doi.org/10.1007/978-3-319-27592-5_10
        • Cestèle S.
        • Catterall W.A.
        Molecular mechanisms of neurotoxin action on voltage-gated sodium channels.
        Biochimie. 2000; 82: 883-892https://doi.org/10.1016/s0300-9084(00)01174-3
        • Chippaux J.-P.
        • Goyffon M.
        Epidemiology of scorpionism: a global appraisal.
        Acta Trop. 2008; 107: 71-79https://doi.org/10.1016/j.actatropica.2008.05.021
        • Cologna C.T.
        • Marcussi S.
        • Giglio J.R.
        • Soares A.M.
        • Arantes E.C.
        Tityus serrulatus scorpion venom and toxins: an overview.
        Protein Pept. Lett. 2009; 16: 920-932https://doi.org/10.2174/092986609788923329
        • Conceição I.M.
        • Lebrun I.
        • Cano-Abad M.
        • Gandia L.
        • Hernandez-Guijo J.M.
        • Lopez M.G.
        • Villarroya M.
        • Jurkiewicz A.
        • Garcia A.G.
        Synergism between toxin-gamma from Brazilian scorpion Tityus serrulatus and veratridine in chromaffin cells.
        Am. J. Phys. 1998; 274: C1745-C1754https://doi.org/10.1152/ajpcell.1998.274.6.C1745
        • Conceição I.M.
        • Jurkiewicz A.
        • Fonseca D.R.
        • Opperman A.R.
        • Freitas T.A.
        • Lebrun I.
        • Garcez-do-Carmo L.
        Selective release of ATP from sympathetic nerves of rat vas deferens by the toxin TsTX-I from Brazilian scorpion Tityus serrulatus.
        Br. J. Pharmacol. 2005; 144: 519-527https://doi.org/10.1038/sj.bjp.0706062
        • Cupo P.
        Clinical update on scorpion envenoming.
        Rev. Soc. Bras. Med. Trop. 2015; 48: 642-649https://doi.org/10.1590/0037-8682-0237-2015
        • Dutertre S.
        • Lewis R.J.
        Use of venom peptides to probe Ion channel structure and function.
        J. Biol. Chem. 2010; 285: 13315-13320https://doi.org/10.1074/jbc.r109.076596
        • Fernandes V.M.V.
        • Romano-Silva M.A.
        • Gomes D.A.
        • Prado M.A.M.
        • Santos T.
        • Gomez M.V.
        Dopamine release evoked by beta scorpion toxin, tityus gamma, in prefrontal cortical slices is mediated by intracellular calcium stores.
        Cell. Mol. Neurobiol. 2004; 24: 757-767https://doi.org/10.1007/s10571-004-6917-8
        • Fredholm B.B.
        • Abbracchio M.P.
        • Burnstock G.
        • Daly J.W.
        • Harden T.K.
        • Jacobson K.A.
        • Leff P.
        • Williams M.
        Nomenclature and classification of purinoceptors.
        Pharmacol. Rev. 1994; 46: 143-156
        • Furness J.B.
        The enteric nervous system and neurogastroenterology.
        Nat. Rev. Gastroenterol. Hepatol. 2012; 9: 286-294https://doi.org/10.1038/nrgastro.2012.32
        • Gallego D.
        • Hernández P.
        • Clavé P.
        • Jiménez M.
        P2Y1 receptors mediate inhibitory purinergic neuromuscular transmission in the human colon.
        Am. J. Physiol. Gastrointest. Liver Physiol. 2006; 291: G584-G594https://doi.org/10.1152/ajpgi.00474.2005
        • Galligan J.J.
        • LePard K.J.
        • Schneider D.A.
        • Zhou X.
        Multiple mechanisms of fast excitatory synaptic transmission in the enteric nervous system.
        J. Auton. Nerv. Syst. 2000; 81: 97-103https://doi.org/10.1016/s0165-1838(00)00130-2
        • Garcia M.L.
        • Hanner M.
        • Knaus H.G.
        • Slaughter R.
        • Kaczorowski G.J.
        Scorpion toxins as tools for studying potassium channels.
        Methods Enzymol. 1999; 294: 624-639https://doi.org/10.1016/s0076-6879(99)94035-1
        • Goldstein D.S.
        Differential responses of components of the autonomic nervous system.
        in: Buijs R.M. Swaab D.F. Handbook of Clinical Neurology. vol. 117. Elsevier, 2013: 13-22https://doi.org/10.1016/B978-0-444-53491-0.00002-X (3rd series)
        • Holm A.N.
        • Rich A.
        • Miller S.M.
        • Strege P.
        • Ou Y.
        • Gibbons S.
        • Sarr M.G.
        • Szurszewski J.H.
        • Rae J.L.
        • Farrugia G.
        Sodium current in human jejunal circular smooth muscle cells.
        Gastroenterology. 2002; 122: 178-187https://doi.org/10.1053/gast.2002.30346
        • Housley D.M.
        • Housley G.D.
        • Liddell M.J.
        • Jennings E.A.
        Scorpion toxin peptide action at the ion channel subunit level.
        Neuropharmacol. 2017; 127: 46-78https://doi.org/10.1016/j.neuropharm.2016.10.004
        • Isbister G.K.
        • Bawaskar H.S.
        Scorpion envenomation.
        N. Engl. J. Med. 2014; 371: 457-463https://doi.org/10.1056/nejmra1401108
        • Israel M.R.
        • Tay B.
        • Deuis J.R.
        • Vetter I.
        Sodium channels and venom peptide pharmacology.
        Adv. Pharmacol. 2017; 79: 67-116https://doi.org/10.1016/bs.apha.2017.01.004
        • Jiménez-Vargas J.M.
        • Possani L.D.
        • Luna-Ramírez K.
        Arthropod toxins acting on neuronal potassium channels.
        Neuropharmacology. 2017; 127: 139-160https://doi.org/10.1016/j.neuropharm.2017.09.025
        • Jurkiewicz A.
        • Jurkiewicz N.H.
        Dual effect of alpha-adrenoceptor antagonists in rat isolated vas deferens.
        Br. J. Pharmacol. 1976; 56: 169-178https://doi.org/10.1111/j.1476-5381.1976.tb07439.x
        • Klapproth H.
        • Reinheimer T.
        • Metzen J.
        • Münch M.
        • Bittinger F.
        • Kirkpatrick C.J.
        • Höhle K.D.
        • Schemann M.
        • Racké K.
        • Wessler I.
        Non-neuronal acetylcholine, a signalling molecule synthezised by surface cells of rat and man.
        Naunyn Schmiedeberg’s Arch. Pharmacol. 1997; 355: 515-523https://doi.org/10.1007/pl00004977
        • Kostka P.
        • Sipos S.N.
        • Kwan C.Y.
        • Niles L.P.
        • Daniel E.E.
        Identification and characterization of presynaptic and postsynaptic beta adrenoreceptors in the longitudinal smooth muscle/myenteric plexus of dog ileum.
        J. Pharmacol. Exp. Ther. 1989; 251: 305-310
        • Liu L.
        • Coupar I.M.
        Characterisation of pre- and post-synaptic alpha-adrenoceptors in modulation of the rat ileum longitudinal and circular muscle activities.
        Naunyn Schmiedeberg’s Arch. Pharmacol. 1997; 356: 248-256https://doi.org/10.1007/pl00005048
        • Lourenço W.R.
        • Cuellar O.
        Scorpions, scorpionism, life history strategies and parthenogenesis.
        J. Venom. Anim. Toxins. 1995; 1: 51-62https://doi.org/10.1590/S0104-79301995000200002
        • Mandela P.
        • Chandley M.
        • Xu Y.-Y.
        • Zhu M.-Y.
        • Ordway G.A.
        Reserpine-induced reduction in norepinephrine transporter function requires catecholamine storage vesicles.
        Neurochem. Int. 2010; 56: 760-767https://doi.org/10.1016/j.neuint.2010.02.011
        • Martin-Eauclaire M.-F.
        • Pimenta A.M.C.
        • Bougis P.E.
        • De Lima M.E.
        Potassium channel blockers from the venom of the Brazilian scorpion Tityus serrulatus (Lutz and Mello, 1922).
        Toxicon. 2016; 119: 253-265https://doi.org/10.1016/j.toxicon.2016.06.016
        • Massensini A.R.
        • Romano-Silva M.A.
        • Gomez M.V.
        Sodium channel toxins and neurotransmitter release.
        Neurochem. Res. 2003; 28: 1607-1611https://doi.org/10.1023/A:1025643030044
        • Matos I.M.
        • Teixeira M.M.
        • Leite R.
        • Freire-Maia L.
        Pharmacological evidence that neuropeptides mediate part of the actions of scorpion venom on the guinea pig ileum.
        Eur. J. Pharmacol. 1999; 368: 231-236https://doi.org/10.1016/s0014-2999(99)00016-3
      1. Ministry of Health of Brazil, 2019. Acidentes por animais peçonhentos: o que fazer e como evitar. SINANWEB. Table Data of Venomous Animals and Envenomation by Scorpions. https://www.saude.gov.br/saude-de-a-z/acidentes-por-animais-peconhentos Accessed in 04/06/2020.

        • Moraes E.R.
        • Kalapothakis E.
        • Naves L.A.
        • Kushmerick C.
        Differential effects of Tityus bahiensis scorpion venom on tetrodotoxin-sensitive and tetrodotoxin-resistant sodium currents.
        Neurotox. Res. 2011; 19: 102-114https://doi.org/10.1007/s12640-009-9144-8
        • Muraki K.
        • Imaizumi Y.
        • Watanabe M.
        Sodium currents in smooth muscle cells freshly isolated from stomach fundus of the rat and ureter of the guinea-pig.
        J. Physiol. 1991; 442: 351-375https://doi.org/10.1113/jphysiol.1991.sp018797
        • Narahashi T.
        Pharmacology of Tetrodotoxin.
        J. Toxicol. Toxin Reviews. 2001; 20: 67-84https://doi.org/10.1081/txr-100102537
        • Nasser Y.
        • Ho W.
        • Sharkey K.A.
        Distribution of adrenergic receptors in the enteric nervous system of the guinea pig, mouse, and rat.
        J. Comp. Neurol. 2006; 495: 529-553https://doi.org/10.1002/cne.20898
        • Neuhuber W.
        • Wörl J.
        Monoamines in the enteric nervous system.
        Histochem. Cell Biol. 2018; 150: 703-709https://doi.org/10.1007/s00418-018-1723-4
        • Norton R.
        • McDonough S.
        Peptides targeting voltage-gated calcium channels.
        Curr. Pharm. Des. 2008; 14: 2480-2491https://doi.org/10.2174/138161208785777478
        • Ojeda P.G.
        • Wang C.K.
        • Craik D.J.
        Chlorotoxin: structure, activity, and potential uses in cancer therapy.
        Biopolymers. 2016; 106: 25-36https://doi.org/10.1002/bip.22748
        • Osinski M.A.
        • Bass P.J.
        Chronic denervation of rat jejunum results in cholinergic supersensitivity due to reduction of cholinesterase activity.
        Pharmacol. Exp. Ther. 1993; 266: 1684-1690
        • Pedraza Escalona M.
        • Possani L.D.
        Scorpion beta-toxins and voltage-gated sodium channels: interactions and effects.
        Front. Biosci. (Landmark Ed.). 2013; 18: 572-587https://doi.org/10.2741/4121
        • Poole D.P.
        • Castelucci P.
        • Robbins H.L.
        • Chiocchetti R.
        • Furness J.B.
        The distribution of P2X3 purine receptor subunits in the guinea pig enteric nervous system.
        Auton. Neurosci. 2002; 101: 39-47https://doi.org/10.1016/S1566-0702(02)00179-0
        • Possani L.D.
        • Selisko B.
        • Gurrola G.B.
        Structure and function of scorpion toxins affecting K+-channels.
        Perspectives in Drug Discovery and Design. 1999; 15: 15-40https://doi.org/10.1023/A:1017062613503
        • Pucca M.B.
        • Cerni F.A.
        • Pinheiro Junior E.L.
        • Bordon K. de C.F.
        • Amorim F.G.
        • Cordeiro F.A.
        • Arantes E.C.
        Tityus serrulatus venom – a lethal cocktail.
        Toxicon. 2015; 108: 272-284https://doi.org/10.1016/j.toxicon.2015.10.015
        • Quintero-Hernández V.
        • Jiménez-Vargas J.M.
        • Gurrola G.B.
        • Valdivia H.H.
        • Possani L.D.
        Scorpion venom components that affect ion-channels function.
        Toxicon. 2013; 76: 328-342https://doi.org/10.1016/j.toxicon.2013.07.012
        • Rugiero F.
        • Mistry M.
        • Sage D.
        • Black J.A.
        • Waxman S.G.
        • Crest M.
        • Clerc N.
        • Delmas P.
        • Gola M.
        Selective expression of a persistent tetrodotoxin-resistant Na+ current and NaV1.9 subunit in myenteric sensory neurons.
        J. Neurosci. 2003; 23: 2715-2725https://doi.org/10.1523/JNEUROSCI.23-07-02715.2003
        • Schemann M.J.
        Control of gastrointestinal motility by the “gut brain”-the enteric nervous system.
        Pediatr. Gastroenterol. Nutr. 2005; 41: S4-S6https://doi.org/10.1097/01.scs.0000180285.51365.55
        • Schwartz E.F.
        • Capes E.M.
        • Diego-García E.
        • Zamudio F.Z.
        • Fuentes O.
        • Possani L.D.
        • Valdivia H.H.
        Characterization of hadrucalcin, a peptide from Hadrurus gertschi scorpion venom with pharmacological activity on ryanodine receptors.
        Br. J. Pharmacol. 2009; 157: 392-403https://doi.org/10.1111/j.1476-5381.2009.00147.x
        • Silveira N.P.
        • Moraes-Santos T.
        • Azevedo A.D.
        • Freire-Maia L.
        Effects of Tityus serrulatus scorpion venom and one of its purified toxins (toxin gamma) on the isolated guinea-pig heart.
        Comp. Biochem. Physiol. C. 1991; 98: 329-336https://doi.org/10.1016/0742-8413(91)90213-d
        • Teixeira A.
        • Fontoura B.
        • Freire-Maia L.
        • Machado C.R.
        • Camargos E.R.
        • Teixeira M.
        Evidence for a direct action of Tityus serrulatus scorpion venom on the cardiac muscle.
        Toxicon. 2001; 39: 703-709https://doi.org/10.1016/s0041-0101(00)00200-2
        • Teixeira C.E.
        • Priviero F.B.
        • Okuyama C.E.
        • De Nucci G.
        • Antunes E.
        Pharmacological characterization of the presynaptic activity of Tityus serrulatus venom in the rat anococcygeus muscle.
        Toxicon. 2003; 42: 451-460https://doi.org/10.1016/s0041-0101(03)00172-7
        • Teixeira C.E.
        • de Oliveira J.F.
        • Baracat J.S.
        • Priviero F.B.M.
        • Okuyama C.E.
        • Rodrigues Netto N.
        • De Nucci G.
        Nitric oxide release from human corpus cavernosum induced by a purified scorpion toxin.
        Urology. 2004; 63: 184-189https://doi.org/10.1016/s0090-4295(03)00785-4
        • Tezuka A.
        • Ishihata A.
        • Aita T.
        • Katano Y.
        Aging-related alterations in the contractile responses to acetylcholine, muscarinic cholinoceptors and cholinesterase activities in jejunum and colon of the male Fischer 344 rats.
        Exp. Gerontol. 2004; 39: 91-100https://doi.org/10.1016/j.exger.2003.08.010
        • Thompson C.H.
        • Olivetti P.R.
        • Fuller M.D.
        • Freeman C.S.
        • McMaster D.
        • French R.J.
        • McCarty N.A.
        Isolation and characterization of a high affinity peptide inhibitor of ClC-2 chloride channels.
        J. of Biol. Chem. 2009; 284: 26051-26062https://doi.org/10.1074/jbc.m109.031724
        • Vasconcelos F.
        • Lanchote V.L.
        • Bendhack L.M.
        • Giglio J.R.
        • Sampaio S.V.
        • Arantes EC.
        Effects of voltage-gated Na+ channel toxins from Tityus serrulatus venom on rat arterial blood pressure and plasma catecholamines.
        Comp. Biochem. Physiol. C: Toxicol. Pharmacol. 2005; 141: 85-92https://doi.org/10.1016/j.cca.2005.05.012
        • Wang G.-D.
        • Wang X.-Y.
        • Hu H.-Z.
        • Liu S.
        • Gao N.
        • Fang X.
        • Wood J.D.
        Inhibitory neuromuscular transmission mediated by the P2Y1 purinergic receptor in guinea pig small intestine.
        Am. J. Physiol. Gastrointest. Liver Physiol. 2007; 292: G1483-G1489https://doi.org/10.1152/ajpgi.00450.2006
        • Wehrwein E.A.
        • Orer H.S.
        • Barman S.M.
        Overview of the anatomy, physiology, and pharmacology of the autonomic nervous system.
        Compr. Physiol. 2016; 6: 1239-1278https://doi.org/10.1002/cphy.c150037
        • Weinberger H.
        • Moran Y.
        • Gordon D.
        • Turkov M.
        • Kahn R.
        • Gurevitz M.
        Positions under positive selection—key for selectivity and potency of scorpion alpha-toxins.
        Mol. Biol. Evol. 2010; 27: 1025-1034https://doi.org/10.1093/molbev/msp310
        • Xiong Z.
        • Sperelakis N.
        • Noffsinger A.
        • Fenoglio-Preiser C.
        Fast Na+ current in circular smooth muscle cells of the large intestine.
        Pflügers Arch. 1993; 423: 485-491https://doi.org/10.1007/BF00374945
        • Yajima M.
        • Kimura S.
        • Karaki S.
        • Nio-Kobayashi J.
        • Tsuruta T.
        • Kuwahara A.
        • Yajima T.
        • Iwanaga T.
        Non-neuronal, but atropine-sensitive ileal contractile responses to short-chain fatty acids: age-dependent desensitization and restoration under inflammatory conditions in mice.
        Physiol. Rep. 2016; 4e12759https://doi.org/10.14814/phy2.12759
        • Zhu S.
        • Huys I.
        • Dyason K.
        • Verdonck F.
        • Tytgat J.
        Evolutionary trace analysis of scorpion toxins specific for K-channels.
        Proteins. 2004; 54: 361-370https://doi.org/10.1002/prot.10588