Advertisement

Orexin A and B in the rat superior salivatory nucleus

  • Tadasu Sato
    Affiliations
    Division of Oral and Craniofacial Anatomy, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
    Search for articles by this author
  • Takehiro Yajima
    Affiliations
    Division of Oral and Craniofacial Anatomy, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
    Search for articles by this author
  • Masako Fujita
    Affiliations
    Department of Oral Physiology, Okayama University Graduate School of Medicine and Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan
    Search for articles by this author
  • Motoi Kobashi
    Affiliations
    Department of Oral Physiology, Okayama University Graduate School of Medicine and Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan
    Search for articles by this author
  • Hiroyuki Ichikawa
    Affiliations
    Division of Oral and Craniofacial Anatomy, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
    Search for articles by this author
  • Ryusuke Yoshida
    Affiliations
    Department of Oral Physiology, Okayama University Graduate School of Medicine and Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan
    Search for articles by this author
  • Yoshihiro Mitoh
    Correspondence
    Corresponding author at: Department of Oral Physiology, Okayama University Graduate School of Medicine and Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan.
    Affiliations
    Department of Oral Physiology, Okayama University Graduate School of Medicine and Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan

    Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama 700-8525, Japan
    Search for articles by this author

      Highlights

      • Rat superior salivatory nucleus (SSN) neurons were immunohistochemically studied.
      • SSN neurons had orexin-A- and -B-immunoreactive nerve fibers.
      • SSN neurons were immunoreactive for orexin receptor-1 and -2.
      • Orexins may regulate activation of SSN neurons for salivary secretion.

      Abstract

      Orexin (OX), which regulates sleep and wakefulness and feeding behaviors has 2 isoforms, orexin-A and -B (OXA and OXB). In this study, the distribution of OXA and OXB was examined in the rat superior salivatory nucleus (SSN) using retrograde tracing and immunohistochemical and methods. OXA- and OXB-immunoreactive (-ir) nerve fibers were seen throughout the SSN. These nerve fibers surrounded SSN neurons retrogradely labeled with Fast blue (FB) from the corda-lingual nerve. FB-positive neurons had pericellular OXA- (47.5%) and OXB-ir (49.0%) nerve fibers. Immunohistochemistry for OX receptors also demonstrated the presence of OX1R and OX2R in FB-positive SSN neurons. The majority of FB-positive SSN neurons contained OX1R- (69.7%) or OX2R-immunoreactivity (57.8%). These neurons had small and medium-sized cell bodies. In addition, half of FB-positive SSN neurons which were immunoreactive for OX1R (47.0%) and OX2R (52.2%) had pericellular OXA- and OXB-ir nerve fibers, respectively. Co-expression of OX1R- and OX2R was common in FB-positive SSN neurons. The present study suggests a possibility that OXs regulate the activity of SSN neurons through OX receptors.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Autonomic Neuroscience: Basic and Clinical
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Contreras R.J.
        • Gomez M.M.
        • Norgren R.
        Central origins of cranial nerve parasympathetic neurons in the rat.
        J. Comp. Neurol. 1980; 190: 373-394
        • Dall’aglio C.
        • Pascucci L.
        • Mercati F.
        • Giontella A.
        • Pedini V.
        • Ceccarelli P.
        Immunohistochemical identification and localization of orexin A and orexin type 2 receptor in the horse gastrointestinal tract.
        Res. Vet. Sci. 2009; 86: 189-193
        • Darwinkel A.
        • Stanić D.
        • Booth L.C.
        • May C.N.
        • Lawrence A.J.
        • Yao S.T.
        Distribution of orexin-1 receptor-green fluorescent protein- (OX1-GFP) expressing neurons in the mouse brain stem and pons: co-localization with tyrosine hydroxylase and neuronal nitric oxide synthase.
        Neuroscience. 2014; 278: 253-264
        • Desarnaud F.
        • Murillo-Rodriguez E.
        • Lin L.
        • Xu M.
        • Gerashchenko D.
        • Shiromani S.N.
        • Nishino S.
        • Mignot E.
        • Shiromani P.J.
        The diurnal rhythm of hypocretin in young and old F344 rats.
        Sleep. 2004; 27: 851-856
        • Ferguson D.B.
        • Fort A.
        Circadian variations in human resting submandibular saliva flow rate and composition.
        Arch. Oral Biol. 1974; 19: 47-55
        • Follwell M.J.
        • Ferguson A.V.
        Cellular mechanisms of orexin actions on paraventricular nucleus neurons in rat hypothalamus.
        J. Physiol. 2002; 545: 855-867
        • Geerling J.C.
        • Shin J.W.
        • Chimenti P.C.
        • Loewy A.D.
        Paraventricular hypothalamic nucleus: axonal projections to the brainstem.
        J. Comp. Neurol. 2010; 518: 1460-1499
        • Greco M.A.
        • Shiromani P.J.
        Hypocretin receptor protein and mRNA expression in the dorsolateral pons of rats.
        Brain Res. Mol. Brain Res. 2001; 88: 176-182
        • Harris G.C.
        • Aston-Jones G.
        Arousal and reward: a dichotomy in orexin function.
        Trends Neurosci. 2006; 29: 571-577
        • Hosoya Y.
        • Matsushita M.
        • Sugiura Y.
        A direct hypothalamic projection to the superior salivatory nucleus neurons in the rat. A study using anterograde autoradiographic and retrograde HRP methods.
        Brain Res. 1983; 266: 329-333
        • Hübschle T.
        • McKinley M.J.
        • Oldfield B.J.
        Efferent connections of the lamina terminalis, the preoptic area and the insular cortex to submandibular and sublingual gland of the rat traced with pseudorabies virus.
        Brain Res. 1998; 806: 219-231
        • Hübschle T.
        • Mathai M.L.
        • McKinley M.J.
        • Oldfield B.J.
        Multisynaptic neuronal pathways from the submandibular and sublingual glands to the lamina terminalis in the rat: a model for the role of the lamina terminalis in the control of osmo- and thermoregulatory behavior.
        Clin. Exp. Pharmacol. Physiol. 2001; 28: 558-569
        • Jansen A.S.
        • Ter Horst G.J.
        • Mettenleiter T.C.
        • Loewy A.D.
        CNS cell groups projecting to the submandibular parasympathetic preganglionic neurons in the rat.
        Brain Res. 1992; 572: 253-260
        • Kukkonen J.P.
        Physiology of the orexinergic/hypocretinergic system: a revisit in 2012.
        Am. J. Physiol. Cell Physiol. 2013; 304: C2-C32
        • de Lecea L.
        • Kilduff T.S.
        • Peyron C.
        • Gao X.
        • Foye P.E.
        • Danielson P.E.
        • Fukuhara C.
        • Battenberg E.L.
        • Gautvik V.T.
        • Bartlett 2nd, F.S.
        • Frankel W.N.
        • van den Pol A.N.
        • Bloom F.E.
        • Gautvik K.M.
        • Sutcliffe J.G.
        The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity.
        Proc. Natl. Acad. Sci. U. S. A. 1998; 95: 322-327
        • Lee Y.H.
        • Tsai M.C.
        • Li T.L.
        • Dai Y.W.
        • Huang S.C.
        • Hwang L.L.
        Spontaneously hypertensive rats have more orexin neurons in the hypothalamus and enhanced orexinergic input and orexin 2 receptor-associated nitric oxide signalling in the rostral ventrolateral medulla.
        Exp. Physiol. 2015; 100: 993-1007
        • Liguori G.
        • Tafuri S.
        • Miyoshi C.
        • Yanagisawa M.
        • Squillacioti C.
        • De Pasquale V.
        • Mirabella N.
        • Vittoria A.
        • Costagliola A.
        Localization of orexin B and orexin-2 receptor in the rat epididymis.
        Acta Histochem. 2018; 120: 292-297
        • Linehan V.
        • Fang L.Z.
        • Hirasawa M.
        Short-term high-fat diet primes excitatory synapses for long-term depression in orexin neurons.
        J. Physiol. 2018; 596: 305-316
        • Matsuo R.
        Central connections for salivary innervations and efferent impulse formation.
        in: Garrett J.R. Ekström J. Anderson L.C. Frontiers of Oral Biology, Neural Mechanisms of Salivary Gland Secretion. vol. 11. Karger, Basel1999: 26-43
        • Matsuo R.
        Role of saliva in the maintenance of taste sensitivity.
        Crit. Rev. Oral Biol. Med. 2000; 11: 216-229
        • Matsuo R.
        • Kobashi M.
        • Mitoh Y.
        • Fujita M.
        Role of the lateral hypothalamus in submandibular salivary secretion during feeding in rats.
        Brain Res. 2015; 1596: 99-107
        • McGregor R.
        • Damian A.
        • Fabbiani G.
        • Torterolo P.
        • Pose I.
        • Chase M.
        • Morales F.R.
        Direct hypothalamic innervation of the trigeminal motor nucleus: a retrograde tracer study.
        Neuroscience. 2005; 136: 1073-1081
        • Mitoh Y.
        • Funahashi M.
        • Kobashi M.
        • Matsuo R.
        Excitatory and inhibitory postsynaptic currents of the superior salivatory nucleus innervating the salivary glands and tongue in the rat.
        Brain Res. 2004; 999: 62-72
        • Nambu T.
        • Sakurai T.
        • Mizukami K.
        • Hosoya Y.
        • Yanagisawa M.
        • Goto K.
        Distribution of orexin neurons in the adult rat brain.
        Brain Res. 1999; 827: 243-260
        • Nixon J.P.
        • Smale L.
        A comparative analysis of the distribution of immunoreactive orexin A and B in the brains of nocturnal and diurnal rodents.
        Behav. Brain Funct. 2007; 3: 28
        • Paxinos G.
        • Watson C.
        The Rat Brain in Stereotaxic Coordinates (Fourth Edition).
        Academic Press, San Diego1998
        • Saito Y.C.
        • Tsujino N.
        • Hasegawa E.
        • Akashi K.
        • Abe M.
        • Mieda M.
        • Sakimura K.
        • Sakurai T.
        GABAergic neurons in the preoptic area send direct inhibitory projections to orexin neurons.
        Front. Neural Circuits. 2013; 7: 192
        • Sakurai T.
        The role of orexin in motivated behaviours.
        Nat. Rev. Neurosci. 2014; 15: 719-731
        • Sakurai T.
        • Amemiya A.
        • Ishii M.
        • Matsuzaki I.
        • Chemelli R.M.
        • Tanaka H.
        • Williams S.C.
        • Richardson J.A.
        • Kozlowski G.P.
        • Wilson S.
        • Arch J.R.
        • Buckingham R.E.
        • Haynes A.C.
        • Carr S.A.
        • Annan R.S.
        • McNulty D.E.
        • Liu W.S.
        • Terrett J.A.
        • Elshourbagy N.A.
        • Bergsma D.J.
        • Yanagisawa M.
        Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior.
        Cell. 1998; 92: 573-585
        • Smith B.N.
        • Davis S.F.
        • Van Den Pol A.N.
        • Xu W.
        Selective enhancement of excitatory synaptic activity in the rat nucleus tractus solitarius by hypocretin 2.
        Neuroscience. 2002; 115: 707-714
        • Soya S.
        • Takahashi T.M.
        • McHugh T.J.
        • Maejima T.
        • Herlitze S.
        • Abe M.
        • Sakimura K.
        • Sakurai T.
        Orexin modulates behavioral fear expression through the locus coeruleus.
        Nat. Commun. 2017; 8: 1606
        • Stoyanova I.I.
        • Lazarov N.E.
        Localization of orexin-A-immunoreactive fibers in the mesencephalic trigeminal nucleus of the rat.
        Brain Res. 2005; 1054: 82-87
        • Suzuki H.
        • Takemoto Y.
        • Yamamoto T.
        Differential distribution of orexin-A-like and orexin receptor 1 (OX1R)-like immunoreactivities in the Xenopus pituitary.
        Tissue Cell. 2007; 39: 423-430
        • Takeuchi Y.
        • Fukui Y.
        • Ichiyama M.
        • Miyoshi S.
        • Nishimura Y.
        Direct amygdaloid projections to the superior salivatory nucleus: a light and electron microscopic study in the cat.
        Brain Res. Bull. 1991; 27: 85-92
        • Zeitzer J.M.
        • Buckmaster C.L.
        • Parker K.J.
        • Hauck C.M.
        • Lyons D.M.
        • Mignot E.
        Circadian and homeostatic regulation of hypocretin in a primate model: implications for the consolidation of wakefulness.
        J. Neurosci. 2003; 23: 3555-3560
        • Zhang J.
        • Luo P.
        Orexin B immunoreactive fibers and terminals innervate the sensory and motor neurons of jaw-elevator muscles in the rat.
        Synapse. 2002; 44: 106-110
        • Zheng H.
        • Patterson L.M.
        • Berthoud H.R.
        Orexin-A projections to the caudal medulla and orexin-induced c-Fos expression, food intake, and autonomic function.
        J. Comp. Neurol. 2005; 485: 127-142