Advertisement

The inevitability of ATP as a transmitter in the carotid body

      Abstract

      Atmospheric oxygen concentrations rose markedly at several points in evolutionary history. Each of these increases was followed by an evolutionary leap in organismal complexity, and thus the cellular adaptions we see today have been shaped by the levels of oxygen within our atmosphere. In eukaryotic cells, oxygen is essential for the production of adenosine 5′-triphosphate (ATP) which is the ‘Universal Energy Currency’ of life. Aerobic organisms survived by evolving precise mechanisms for converting oxygen within the environment into energy. Higher mammals developed specialised organs for detecting and responding to changes in oxygen content to maintain gaseous homeostasis for survival. Hypoxia is sensed by the carotid bodies, the primary chemoreceptor organs which utilise multiple neurotransmitters one of which is ATP to evoke compensatory reflexes. Yet, a paradox is presented in oxygen sensing cells of the carotid body when during periods of low oxygen, ATP is seemingly released in abundance to transmit this signal although the synthesis of ATP is theoretically halted because of its dependence on oxygen. We propose potential mechanisms to maintain ATP production in hypoxia and summarise recent data revealing elevated sensitivity of purinergic signalling within the carotid body during conditions of sympathetic overactivity and hypertension. We propose the carotid body is hypoxic in numerous chronic cardiovascular and respiratory diseases and highlight the therapeutic potential for modulating purinergic transmission.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Autonomic Neuroscience: Basic and Clinical
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abbracchio M.P.
        • Ceruti S.
        Roles of P2 receptors in glial cells: focus on astrocytes.
        Purinergic Signal. 2006; 2: 595-604https://doi.org/10.1007/s11302-006-9016-0
        • Abbracchio M.P.
        • Burnstock G.
        • Boeynaems J.-M.
        • Barnard E.A.
        • Boyer J.L.
        • Kennedy C.
        • Knight G.E.
        • Fumagalli M.
        • Gachet C.
        • Jacobson K.A.
        • Weisman G.A.
        International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy.
        Pharmacol. Rev. 2006; 58: 281-341https://doi.org/10.1124/pr.58.3.3
        • Abdala A.P.
        • McBryde F.D.
        • Marina N.
        • Hendy E.B.
        • Engelman Z.J.
        • Fudim M.
        • Sobotka P.A.
        • Gourine A.V.
        • Paton J.F.R.
        Hypertension is critically dependent on the carotid body input in the spontaneously hypertensive rat.
        J. Physiol. Lond. 2012; 590: 4269-4277https://doi.org/10.1113/jphysiol.2012.237800
        • Abraham E.H.
        • Prat A.G.
        • Gerweck L.
        • Seneveratne T.
        • Arceci R.J.
        • Kramer R.
        • Guidotti G.
        • Cantiello H.F.
        The multidrug resistance (mdr1) gene product functions as an ATP channel.
        Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 312-316https://doi.org/10.1073/pnas.90.1.312
        • Accorsi-Mendonça D.
        • Almado C.E.L.
        • Bonagamba L.G.H.
        • Castania J.A.
        • Moraes D.J.A.
        • Machado B.H.
        Enhanced firing in NTS induced by short-term sustained hypoxia is modulated by glia-neuron interaction.
        J. Neurosci. 2015; 35: 6903-6917https://doi.org/10.1523/JNEUROSCI.4598-14.2015
        • Acker H.
        • O’Regan R.G.
        The effects of stimulation of autonomic nerves on carotid body blood flow in the cat.
        J. Physiol. Lond. 1981; 315: 99-110https://doi.org/10.1113/jphysiol.1981.sp013735
        • Arnold S.
        • Arnold S.
        Cell respiration is controlled by ATP, an allosteric inhibitor of cytochrome-c oxidase.
        Eur. J. Biochem. 1997; 249: 350-354https://doi.org/10.1111/j.1432-1033.1997.t01-1-00350.x
        • Atanasova D.Y.
        • Iliev M.E.
        • Lazarov N.E.
        Morphology of the rat carotid body.
        Biomed. Rev. 2011; 22: 41-55https://doi.org/10.14748/bmr.v22.34
        • Atanasova D.Y.
        • Dimitrov N.D.
        • Lazarov N.E.
        Expression of nitric oxide-containing structures in the rat carotid body.
        Acta Histochem. 2016; 118: 770-775https://doi.org/10.1016/j.acthis.2016.09.007
        • Bachelard H.S.
        • Lewis L.D.
        • Pontén U.
        • Siesjö B.K.
        Mechanisms activating glycolysis in the brain in arterial hypoxia.
        J. Neurochem. 1974; 22: 395-401https://doi.org/10.1111/j.1471-4159.1974.tb07605.x
        • Bianchi V.
        • Spychala J.
        Mammalian 5′-nucleotidases.
        J. Biol. Chem. 2003; 278: 46195-46198https://doi.org/10.1074/jbc.R300032200
        • Boyer P.D.
        ATP synthase—past and future.
        Biochim. Biophys. Acta. 1998; 1365: 3-9https://doi.org/10.1016/s0005-2728(98)00066-8
        • Breton S.
        • Milani L.
        • Ghiselli F.
        • Guerra D.
        • Stewart D.T.
        • Passamonti M.
        A resourceful genome: updating the functional repertoire and evolutionary role of animal mitochondrial DNAs.
        Trends Genet. 2014; 30: 555-564https://doi.org/10.1016/j.tig.2014.09.002
        • Browne L.E.
        Structure of P2X receptors.
        WIREs Membr. Transp. Signal. 2011; 1: 56-69https://doi.org/10.1002/wmts.24
        • Burleson M.L.
        • Milsom W.K.
        Comparative aspects of O2 chemoreception: anatomy, physiology and environmental adaptations.
        in: Oxygen Sensing Responses and Adaptation to Hypoxia. Marcel Dekker, 2003
        • Burnstock G.
        Purinergic nerves.
        Pharmacol. Rev. 1972; 24: 509-581
        • Burnstock G.
        Noradrenaline and ATP as cotransmitters in sympathetic nerves.
        Neurochem. Int. 1990; 17: 357-368https://doi.org/10.1016/0197-0186(90)90158-p
        • Burnstock G.
        P2X receptors in sensory neurones.
        Br. J. Anaesth. 2000; 84: 476-488https://doi.org/10.1093/oxfordjournals.bja.a013473
        • Burnstock G.
        Purine and purinergic receptors.
        Brain Neurosci. Adv. 2018; 2 (2398212818817494)https://doi.org/10.1177/2398212818817494
        • Burnstock G.
        • Verkhratsky A.
        Evolution of P2X receptors.
        WIREs Membr. Transp. Signal. 2012; 1: 188-200https://doi.org/10.1002/wmts.13
        • Buttigieg J.
        • Nurse C.A.
        Detection of hypoxia-evoked ATP release from chemoreceptor cells of the rat carotid body.
        Biochem. Biophys. Res. Commun. 2004; 322: 82-87https://doi.org/10.1016/j.bbrc.2004.07.081
        • Bylicky M.A.
        • Mueller G.P.
        • Day R.M.
        Mechanisms of endogenous neuroprotective effects of astrocytes in brain injury.
        Oxidative Med. Cell. Longev. 2018; 20186501031-16https://doi.org/10.1155/2018/6501031
        • Campanucci V.A.
        • Nurse C.A.
        Autonomic innervation of the carotid body: role in efferent inhibition.
        Respir. Physiol. Neurobiol. 2007; 157: 83-92https://doi.org/10.1016/j.resp.2007.01.020
        • Cantó C.
        • Menzies K.J.
        • Auwerx J.
        NAD+ metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus.
        Cell Metab. 2015; 22: 31-53https://doi.org/10.1016/j.cmet.2015.05.023
        • Capt C.
        • Passamonti M.
        • Breton S.
        The human mitochondrial genome may code for more than 13 proteins.
        Mitochondrial DNA. 2015; 00: 1-4https://doi.org/10.3109/19401736.2014.1003924
        • Carroll J.L.
        • Agarwal A.
        • Donnelly D.F.
        • Kim I.
        Purinergic modulation of carotid body glomus cell hypoxia response during postnatal maturation in rats.
        Adv. Exp. Med. Biol. 2012; 758: 249-253https://doi.org/10.1007/978-94-007-4584-1_34
        • Choi J.
        • Tanaka K.
        • Cao Y.
        • Qi Y.
        • Qiu J.
        • Liang Y.
        • Lee S.Y.
        • Stacey G.
        Identification of a plant receptor for extracellular ATP.
        Science. 2014; 343: 290-294https://doi.org/10.1126/science.343.6168.290
        • Conde S.V.
        • Monteiro E.C.
        • Rigual R.
        • Obeso A.
        • Gonzalez C.
        Hypoxic intensity: a determinant for the contribution of ATP and adenosine to the genesis of carotid body chemosensory activity.
        J. Appl. Physiol. 2012; 112: 2002-2010https://doi.org/10.1152/japplphysiol.01617.2011
        • Conde S.V.
        • Sacramento J.F.
        • Guarino M.P.
        • Gonzalez C.
        • Obeso A.
        • Diogo L.N.
        • Monteiro E.C.
        • Ribeiro M.J.
        Carotid body, insulin, and metabolic diseases: unraveling the links.
        Front. Physiol. 2014; 5: 418https://doi.org/10.3389/fphys.2014.00418
        • Conde S.V.
        • Ribeiro M.J.
        • Melo B.F.
        • Guarino M.P.
        • Sacramento J.F.
        Insulin resistance: a new consequence of altered carotid body chemoreflex?.
        J. Physiol. Lond. 2017; 595: 31-41https://doi.org/10.1113/JP271684
        • Connolly N.M.C.
        • Düssmann H.
        • Anilkumar U.
        • Huber H.J.
        • Prehn J.H.M.
        Single-cell imaging of bioenergetic responses to neuronal excitotoxicity and oxygen and glucose deprivation.
        J. Neurosci. 2014; 34: 10192-10205https://doi.org/10.1523/JNEUROSCI.3127-13.2014
        • Cully M.
        Deal watch: Merck bets on purine receptor revival.
        Nat. Rev. Drug Discov. 2016; 15: 525https://doi.org/10.1038/nrd.2016.150
      1. da Silva EF, de Melo ABS, Lobo Júnior E de O, Rodrigues KL, Naves LM, Coltro WKT, Rebelo ACS, Freiria-Oliveira AH, Menani JV, Pedrino GR, Colombari E. Role of the carotid bodies in the hypertensive and natriuretic responses to NaCl load in conscious rats. Front. Physiol. 2018;9:1690. doi:https://doi.org/10.3389/fphys.2018.01690.

        • Davalos D.
        • Grutzendler J.
        • Yang G.
        • Kim J.V.
        • Zuo Y.
        • Jung S.
        • Littman D.R.
        • Dustin M.L.
        • Gan W.-B.
        ATP mediates rapid microglial response to local brain injury in vivo.
        Nat. Neurosci. 2005; 8: 752-758https://doi.org/10.1038/nn1472
        • de Castro F.
        Towards the sensory nature of the carotid body: hering, de Castro and Heymans.
        Front. Neuroanat. 2009; 3: 1-11https://doi.org/10.3389/neuro.05.023.2009
        • Del Rio R.
        • Marcus N.J.
        • Schultz H.D.
        Carotid chemoreceptor ablation improves survival in heart failure.
        J. Am. Coll. Cardiol. 2013; 62: 2422-2430https://doi.org/10.1016/j.jacc.2013.07.079
        • Del Rio R.
        • Andrade D.C.
        • Lucero C.
        • Arias P.
        • Iturriaga R.
        Carotid body ablation abrogates hypertension and autonomic alterations induced by intermittent hypoxia in rats.
        Hypertension. 2016; 68: 436-445https://doi.org/10.1161/HYPERTENSIONAHA.116.07255
        • Delpiano M.A.
        Evidence for glucose uptake in the rabbit carotid body.
        Adv. Exp. Med. Biol. 1993; 337: 111-116https://doi.org/10.1007/978-1-4615-2966-8_16
        • Delpiano M.A.
        • Acker H.
        Extracellular pH changes in the superfused cat carotid body during hypoxia and hypercapnia.
        Brain Res. 1985; 342: 273-280https://doi.org/10.1016/0006-8993(85)91126-6
        • Ellsworth M.L.
        The red blood cell as an oxygen sensor: what is the evidence?.
        Acta Physiol. Scand. 2000; 168: 551-559https://doi.org/10.1046/j.1365-201x.2000.00708.x
        • Fountain S.J.
        Primitive ATP-activated P2X Receptors: Discovery, Function and Pharmacology.
        2013: 1-7https://doi.org/10.3389/fncel.2013.00247/abstract (December)
        • Fukuda R.
        • Zhang H.
        • Kim J.-W.
        • Shimoda L.
        • Dang C.V.
        • Semenza G.L.
        HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells.
        Cell. 2007; 129: 111-122https://doi.org/10.1016/j.cell.2007.01.047
        • Gever J.R.
        • Cockayne D.A.
        • Dillon M.P.
        • Burnstock G.
        • Ford A.P.D.W.
        Pharmacology of P2X channels.
        Pflugers Arch. 2006; 452: 513-537https://doi.org/10.1007/s00424-006-0070-9
        • Gonzalez C.
        • Almaraz L.
        • Obeso A.
        • Rigual R.
        Carotid body chemoreceptors: from natural stimuli to sensory discharges.
        Physiol. Rev. 1994; 74: 829-898https://doi.org/10.1152/physrev.1994.74.4.829
        • Gourine A.V.
        • Wood J.D.
        • Burnstock G.
        Purinergic signalling in autonomic control.
        Trends Neurosci. 2009; 32: 241-248https://doi.org/10.1016/j.tins.2009.03.002
        • Grygorczyk R.
        • Tabcharani J.A.
        • Hanrahan J.W.
        CFTR channels expressed in CHO cells do not have detectable ATP conductance.
        J. Membr. Biol. 1996; 151: 139-148https://doi.org/10.1007/s002329900065
        • Harrison D.G.
        The immune system in hypertension.
        Trans. Am. Clin. Climatol. Assoc. 2014; 125 (–discussion138–40): 130-138
        • Hempleman S.C.
        • Warburton S.J.
        Comparative embryology of the carotid body.
        Respir. Physiol. Neurobiol. 2013; 185: 3-8https://doi.org/10.1016/j.resp.2012.08.004
        • Holmes A.P.
        • Turner P.J.
        • Carter P.
        • Leadbeater W.
        • Ray C.J.
        • Hauton D.
        • Buckler K.J.
        • Kumar P.
        Glycogen metabolism protects against metabolic insult to preserve carotid body function during glucose deprivation.
        J. Physiol. Lond. 2014; 592: 4493-4506https://doi.org/10.1113/jphysiol.2014.276105
        • Holmes A.P.
        • Ray C.J.
        • Pearson S.A.
        • Coney A.M.
        • Kumar P.
        Ecto-5′-nucleotidase (CD73) regulates peripheral chemoreceptor activity and cardiorespiratory responses to hypoxia.
        J. Physiol. Lond. 2017; 596: 3137-3148https://doi.org/10.1113/JP274498
        • Holmes A.P.
        • Ray C.J.
        • Coney A.M.
        • Kumar P.
        Is carotid body physiological O2 sensitivity determined by a unique mitochondrial phenotype?.
        Front. Physiol. 2018; 9: C620-C628https://doi.org/10.3389/fphys.2018.00562
        • Horvat S.
        • Beyer C.
        • Arnold S.
        Effect of hypoxia on the transcription pattern of subunit isoforms and the kinetics of cytochrome c oxidase in cortical astrocytes and cerebellar neurons.
        J. Neurochem. 2006; 99: 937-951https://doi.org/10.1111/j.1471-4159.2006.04134.x
        • Hüttemann M.
        • Lee I.
        • Liu J.
        • Grossman L.I.
        Transcription of mammalian cytochrome coxidase subunit IV-2 is controlled by a novel conserved oxygen responsive element.
        FEBS J. 2007; 274: 5737-5748https://doi.org/10.1111/j.1742-4658.2007.06093.x
        • Hüttemann M.
        • Lee I.
        • Gao X.
        • Pecina P.
        • Pecinová A.
        • Liu J.
        • Aras S.
        • Sommer N.
        • Sanderson T.H.
        • Tost M.
        • Neff F.
        • Aguilar Pimentel J.A.
        • Becker L.
        • Naton B.
        • Rathkolb B.
        • Rozman J.
        • Favor J.
        • Hans W.
        • Prehn C.
        • Puk O.
        • Schrewe A.
        • Sun M.
        • Höfler H.
        • Adamski J.
        • Bekeredjian R.
        • Graw J.
        • Adler T.
        • Busch D.H.
        • Klingenspor M.
        • Klopstock T.
        • Ollert M.
        • Wolf E.
        • Fuchs H.
        • Gailus Durner V.
        • Angelis M.H.
        • Weissmann N.
        • Doan J.W.
        • Bassett D.J.P.
        • Grossman L.I.
        Cytochrome coxidase subunit 4 isoform 2-knockout mice show reduced enzyme activity, airway hyporeactivity, and lung pathology.
        FASEB J. 2012; 26: 3916-3930https://doi.org/10.1096/fj.11-203273
        • Ichikawa H.
        Innervation of the carotid body: Immunohistochemical, denervation, and retrograde tracing studies.
        Microsc. Res. Tech. 2002; 59: 188-195https://doi.org/10.1002/jemt.10193
        • Illes P.
        • Müller C.E.
        • Jacobson K.A.
        • Grutter T.
        • Nicke A.
        • Fountain S.J.
        • Kennedy C.
        • Schmalzing G.
        • Jarvis M.F.
        • Stojilkovic S.S.
        • King B.F.
        • Di Virgilio F.
        Update of P2X receptor properties and their pharmacology: IUPHAR review 30.
        Br. J. Pharmacol. 2021; 178: 489-514https://doi.org/10.1111/bph.15299
        • Imamura H.
        • KPH Nhat
        • Togawa H.
        • Saito K.
        • Iino R.
        • Kato-Yamada Y.
        • Nagai T.
        • Noji H.
        Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators.
        Proc. Natl. Acad. Sci. U. S. A. 2009; 106: 15651-15656https://doi.org/10.1073/pnas.0904764106
        • Ito S.
        • Furuya K.
        • Sokabe M.
        • Hasegawa Y.
        Cellular ATP release in the lung and airway.
        AIMS Biophys. 2016; 3: 571-584https://doi.org/10.3934/biophy.2016.4.571
        • Jansen S.
        • Perrakis A.
        • Ulens C.
        • Winkler C.
        • Andries M.
        • Joosten R.P.
        • Van Acker M.
        • Luyten F.P.
        • Moolenaar W.H.
        • Bollen M.
        Structure of NPP1, an ectonucleotide pyrophosphatase/phosphodiesterase involved in tissue calcification.
        Structure. 2012; 20: 1948-1959https://doi.org/10.1016/j.str.2012.09.001
        • Jones J.F.X.
        Retrospective view of the carotid body research of Ronan G. O’Regan.
        Exp. Physiol. 2003; 89: 39-43https://doi.org/10.1113/expphysiol.2003.002658
        • Kim J.-W.
        • Tchernyshyov I.
        • Semenza G.L.
        • Dang C.V.
        HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia.
        Cell Metab. 2006; 3: 177-185https://doi.org/10.1016/j.cmet.2006.02.002
        • Koeners M.P.
        • Lewis K.E.
        • Ford A.P.
        • Paton J.F.
        Hypertension: a problem of organ blood flow supply-demand mismatch.
        Futur. Cardiol. 2016; 12: 339-349https://doi.org/10.2217/fca.16.5
        • Lane N.
        Oxygen: The Molecule That Made the World.
        Oxford University Press, 2003
        • Lane N.
        Power, Sex, Suicide: Mitochondria and the Meaning of Life.
        OUP Oxford, 2005
        • Lane N.
        The Vital Question.
        Profile Books, 2015
        • Lane N.
        • Martin W.
        The energetics of genome complexity.
        Nature. 2010; 467: 929-934https://doi.org/10.1038/nature09486
        • Lewis C.
        • Neidhart S.
        • Holy C.
        • North R.A.
        • Buell G.
        • Surprenant A.
        Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons.
        Nature. 1995; 377: 432-435https://doi.org/10.1038/377432a0
        • Liu M.
        • King B.F.
        • Dunn P.M.
        • Rong W.
        • Townsend-Nicholson A.
        • Burnstock G.
        Coexpression of P2X(3) and P2X(2) receptor subunits in varying amounts generates heterogeneous populations of P2X receptors that evoke a spectrum of agonist responses comparable to that seen in sensory neurons.
        J. Pharmacol. Exp. Ther. 2001; 296: 1043-1050
        • Lohman A.W.
        • Isakson B.E.
        Differentiating connexin hemichannels and pannexin channels in cellular ATP release.
        FEBS Lett. 2014; 588: 1379-1388https://doi.org/10.1016/j.febslet.2014.02.004
        • López-Barneo J.
        • González-Rodríguez P.
        • Gao L.
        • Fernández-Agüera M.C.
        • Pardal R.
        • Ortega-Sáenz P.
        Oxygen sensing by the carotid body: mechanisms and role in adaptation to hypoxia.
        AJP Cell Physiol. 2016; 310: C629-C642https://doi.org/10.1152/ajpcell.00265.2015
        • Ludwig B.
        • Bender E.
        • Arnold S.
        • Hüttemann M.
        • Lee I.
        • Kadenbach B.
        Cytochrome C oxidase and the regulation of oxidative phosphorylation.
        Chembiochem. 2001; 2: 392-403https://doi.org/10.1002/1439-7633(20010601)2:6<392::AID-CBIC392>3.0.CO;2-N
        • Marina N.
        • Christie I.N.
        • Korsak A.
        • Doronin M.
        • Brazhe A.
        • Hosford P.S.
        • Wells J.A.
        • Sheikhbahaei S.
        • Humoud I.
        • JFR Paton
        • Lythgoe M.F.
        • Semyanov A.
        • Kasparov S.
        • Gourine A.V.
        Astrocytes monitor cerebral perfusion and control systemic circulation to maintain brain blood flow.
        Nat. Commun. 2020; 11: 131-139https://doi.org/10.1038/s41467-019-13956-y
        • McBryde F.D.
        • Abdala A.P.
        • Hendy E.B.
        • Pijacka W.
        • Marvar P.
        • DJA Moraes
        • Sobotka P.A.
        • Paton J.F.R.
        The carotid body as a putative therapeutic target for the treatment of neurogenic hypertension.
        Nat. Commun. 2013; 4 (2395-11)https://doi.org/10.1038/ncomms3395
        • McDonald D.M.
        • Mitchell R.A.
        The innervation of glomus cells, ganglion cells and blood vessels in the rat carotid body: a quantitative ultrastructural analysis.
        J. Neurocytol. 1975; 4: 177-230https://doi.org/10.1007/BF01098781
        • McEwen M.L.
        • Sullivan P.G.
        • Rabchevsky A.G.
        • Springer J.E.
        Targeting mitochondrial function for the treatment of acute spinal cord injury.
        Neurotherapeutics. 2011; 8: 168-179https://doi.org/10.1007/s13311-011-0031-7
        • Milsom W.K.
        • Burleson M.L.
        Peripheral arterial chemoreceptors and the evolution of the carotid body.
        Respir. Physiol. Neurobiol. 2007; 157: 4-11https://doi.org/10.1016/j.resp.2007.02.007
        • Mitchell P.
        Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism.
        Nature. 1961; 191: 144-148https://doi.org/10.1038/191144a0
        • Mitchell P.
        Keilin’s Respiratory Chain Concept and Its Chemiosmotic Consequences.
        vol. 206. American Association for the Advancement of Science, 1979: 1148-1159https://doi.org/10.1126/science.388618
        • Moreno-Domínguez A.
        Acute O2 sensing through HIF2a-dependent expression of atypical cytochrome oxidase subunits in arterial chemoreceptors.
        Sci. Signal. 2020; 13eaay9452https://doi.org/10.1126/scisignal.aay9452
        • Mortaz E.
        • Folkerts G.
        • Nijkamp F.P.
        • Henricks P.A.J.
        ATP and the pathogenesis of COPD.
        Eur. J. Pharmacol. 2010; 638: 1-4https://doi.org/10.1016/j.ejphar.2010.04.019
        • Natsubori A.
        • Tsunematsu T.
        • Karashima A.
        • Imamura H.
        • Kabe N.
        • Trevisiol A.
        • Hirrlinger J.
        • Kodama T.
        • Sanagi T.
        • Masamoto K.
        • Takata N.
        • Nave K.-A.
        • Matsui K.
        • Tanaka K.F.
        • Honda M.
        Intracellular ATP levels in mouse cortical excitatory neurons varies with sleep-wake states.
        Commun. Biol. 2020; 3 (491-11)https://doi.org/10.1038/s42003-020-01215-6
        • Niane L.M.
        • Donnelly D.F.
        • Joseph V.
        • Bairam A.
        Ventilatory and carotid body chemoreceptor responses to purinergic P2X receptor antagonists in newborn rats.
        J. Appl. Physiol. 2011; 110: 83-94https://doi.org/10.1152/japplphysiol.00871.2010
        • Niewinski P.
        • Janczak D.
        • Rucinski A.
        • Tubek S.
        • Engelman Z.J.
        • Piesiak P.
        • Jazwiec P.
        • Banasiak W.
        • Fudim M.
        • Sobotka P.A.
        • Javaheri S.
        • Hart E.C.J.
        • Paton J.F.R.
        • Ponikowski P.
        Carotid body resection for sympathetic modulation in systolic heart failure: results from first-in-man study.
        Eur. J. Heart Fail. 2016; 19: 391-400https://doi.org/10.1002/ejhf.641
        • Nishida K.
        • Nomura Y.
        • Kawamori K.
        • Ohishi A.
        • Nagasawa K.
        ATP metabolizing enzymes ENPP1, 2 and 3 are localized in sensory neurons of rat dorsal root ganglion.
        Eur. J. Histochem. 2018; 62: 2877https://doi.org/10.4081/ejh.2018.2877
        • Norman R.A.
        • Dzielak D.J.
        • Bost K.L.
        • Khraibi A.A.
        • Galloway P.G.
        Immune system dysfunction contributes to the aetiology of spontaneous hypertension.
        J. Hypertens. 1985; 3: 261-268https://doi.org/10.1097/00004872-198506000-00011
        • Nurse C.A.
        Neurotransmitter and neuromodulatory mechanisms at peripheral arterial chemoreceptors.
        Exp. Physiol. 2010; 95: 657-667https://doi.org/10.1113/expphysiol.2009.049312
        • Nurse C.A.
        • Piskuric N.A.
        Signal processing at mammalian carotid body chemoreceptors.
        Semin. Cell Dev. Biol. 2013; 24: 22-30https://doi.org/10.1016/j.semcdb.2012.09.006
        • Nurse C.A.
        • Leonard E.M.
        • Salman S.
        Role of glial-like type II cells as paracrine modulators of carotid body chemoreception.
        Physiol. Genomics. 2018; 50: 255-262https://doi.org/10.1152/physiolgenomics.00142.2017
        • Obeso A.
        • Almaraz L.
        • Gonzalez C.
        Effects of 2-deoxy-D-glucose on in vitro cat carotid body.
        Brain Res. 1986; 371: 25-36https://doi.org/10.1016/0006-8993(86)90806-1
        • Obeso A.
        • Gonzalez C.
        • Dinger B.
        • Fidone S.
        Metabolic activation of carotid body glomus cells by hypoxia.
        J. Appl. Physiol. 1989; 67: 484-487https://doi.org/10.1152/jappl.1989.67.1.484
        • Obeso A.
        • Gonzalez C.
        • Rigual R.
        • Dinger B.
        • Fidone S.
        Effect of low O2 on glucose uptake in rabbit carotid body.
        J. Appl. Physiol. 1993; 74: 2387-2393https://doi.org/10.1152/jappl.1993.74.5.2387
        • Okamoto K.
        • Aoki K.
        Development of a strain of spontaneously hypertensive rats.
        Jpn. Circ. J. 1963; 27: 282-293https://doi.org/10.1253/jcj.27.282
        • Pajuelo Reguera D.
        • Čunátová K.
        • Vrbacký M.
        • Pecinová A.
        • Houštěk J.
        • Mráček T.
        • Pecina P.
        Cytochrome c oxidase subunit 4 isoform exchange results in modulation of oxygen affinity.
        Cells. 2020; 9 (443-20)https://doi.org/10.3390/cells9020443
        • Palmer B.F.
        • Clegg D.J.
        Oxygen sensing and metabolic homeostasis.
        Mol. Cell. Endocrinol. 2014; 397: 51-58https://doi.org/10.1016/j.mce.2014.08.001
        • Papandreou I.
        • Cairns R.A.
        • Fontana L.
        • Lim A.L.
        • Denko N.C.
        HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption.
        Cell Metab. 2006; 3: 187-197https://doi.org/10.1016/j.cmet.2006.01.012
        • Paton J.F.R.
        • Sobotka P.A.
        • Fudim M.
        • Engelman Z.J.
        • Engleman Z.J.
        • ECJ Hart
        • McBryde F.D.
        • Abdala A.P.
        • Marina N.
        • Gourine A.V.
        • Lobo M.
        • Patel N.
        • Burchell A.
        • Ratcliffe L.
        • Nightingale A.
        The carotid body as a therapeutic target for the treatment of sympathetically mediated diseases.
        Hypertension. 2013; 61: 5-13https://doi.org/10.1161/HYPERTENSIONAHA.111.00064
        • Paton J.F.R.
        • Ratcliffe L.
        • Hering D.
        • Wolf J.
        • Sobotka P.A.
        • Narkiewicz K.
        Revelations about carotid body function through its pathological role in resistant hypertension.
        Curr. Hypertens. Rep. 2013; 15: 273-280https://doi.org/10.1007/s11906-013-0366-z
        • Petrova N.V.
        Effect of hypoxia on the lactate dehydrogenase isoenzyme composition in the rat carotid body.
        Bull. Exp. Biol. Med. 1974; 78: 1005-1006https://doi.org/10.1007/BF00796649
        • Pham A.Q.
        • Cho S.-H.
        • Nguyen C.T.
        • Stacey G.
        Arabidopsis lectin receptor kinase P2K2 is a second plant receptor for extracellular ATP and contributes to innate immunity.
        Plant Physiol. 2020; 183: 1364-1375https://doi.org/10.1104/pp.19.01265
        • Pijacka W.
        • McBryde F.D.
        • Marvar P.J.
        • Lincevicius G.S.
        • APL Abdala
        • Woodward L.
        • Li D.
        • Paterson D.J.
        • Paton J.F.R.
        Carotid sinus denervation ameliorates renovascular hypertension in adult Wistar rats.
        J. Physiol. Lond. 2016; 594: 6255-6266https://doi.org/10.1113/JP272708
        • Pijacka W.
        • Moraes D.J.A.
        • Ratcliffe L.E.K.
        • Nightingale A.K.
        • Hart E.C.
        • da Silva M.P.
        • Machado B.H.
        • McBryde F.D.
        • Abdala A.P.
        • Ford A.P.
        • Paton J.F.R.
        Purinergic receptors in the carotid body as a new drug target for controlling hypertension.
        Nat. Med. 2016; 22: 1151-1159https://doi.org/10.1038/nm.4173
        • Piskuric N.A.
        • Nurse C.A.
        Expanding role of ATP as a versatile messenger at carotid and aortic body chemoreceptors.
        J. Physiol. Lond. 2013; 591: 415-422https://doi.org/10.1113/jphysiol.2012.234377
        • Porzionato A.
        • Macchi V.
        • Stecco C.
        • De Caro R.
        The carotid sinus nerve-structure, function, and clinical implications.
        Anat. Rec. 2019; 302: 575-587https://doi.org/10.1002/ar.23829
        • Prasad M.
        • Fearon I.M.
        • Zhang M.
        • Laing M.
        • Vollmer C.
        • Nurse C.A.
        Expression of P2X2 and P2X3 receptor subunits in rat carotid body afferent neurones: role in chemosensory signalling.
        J. Physiol. Lond. 2001; 537: 667-677https://doi.org/10.1111/j.1469-7793.2001.00667.x
        • Purves M.J.
        The role of the cervical sympathetic nerve in the regulation of oxygen consumption of the carotid body of the cat.
        J. Physiol. Lond. 1970; 209: 417-431https://doi.org/10.1113/jphysiol.1970.sp009172
        • Racine M.L.
        • Dinenno F.A.
        Reduced deformability contributes to impaired deoxygenation-induced ATP release from red blood cells of older adult humans.
        J. Physiol. Lond. 2019; 597: 4503-4519https://doi.org/10.1113/JP278338
        • Rader B.A.
        Alkaline phosphatase, an unconventional immune protein.
        Front. Immunol. 2017; 8 (1829-6)https://doi.org/10.3389/fimmu.2017.00897
        • Rakoczy R.J.
        • Wyatt C.N.
        Acute oxygen sensing by the carotid body: a rattlebag of molecular mechanisms.
        J. Physiol. Lond. 2017; 596: 2969-2976https://doi.org/10.1113/JP274351
        • Ribeiro M.J.
        • Sacramento J.F.
        • Gonzalez C.
        • Guarino M.P.
        • Monteiro E.C.
        • Conde S.V.
        Carotid body denervation prevents the development of insulin resistance and hypertension induced by hypercaloric diets.
        Diabetes. 2013; 62: 2905-2916https://doi.org/10.2337/db12-1463
        • Robson S.C.
        • Sévigny J.
        • Zimmermann H.
        The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance.
        Purinergic Signal. 2006; 2: 409-430https://doi.org/10.1007/s11302-006-9003-5
        • Roman R.M.
        • Lomri N.
        • Braunstein G.
        • Feranchak A.P.
        • Simeoni L.A.
        • Davison A.K.
        • Mechetner E.
        • Schwiebert E.M.
        • Fitz J.G.
        Evidence for multidrug resistance-1 P-glycoprotein-dependent regulation of cellular ATP permeability.
        J. Membr. Biol. 2001; 183: 165-173https://doi.org/10.1007/s00232-001-0064-7
        • Rong W.
        • Gourine A.V.
        • Cockayne D.A.
        • Xiang Z.
        • Ford A.P.D.W.
        • Spyer K.M.
        • Burnstock G.
        Pivotal role of nucleotide P2X2 receptor subunit of the ATP-gated ion channel mediating ventilatory responses to hypoxia.
        J. Neurosci. 2003; 23: 11315-11321https://doi.org/10.1523/JNEUROSCI.23-36-11315.2003
        • Salman S.
        • Vollmer C.
        • McClelland G.B.
        • Nurse C.A.
        Characterization of ectonucleotidase expression in the rat carotid body: regulation by chronic hypoxia.
        AJP Cell Physiol. 2017; 313: C274-C284https://doi.org/10.1152/ajpcell.00328.2016
        • Schmidt H.
        • Kamp G.
        The Pasteur effect in facultative anaerobic metazoa.
        Experientia. 1996; 52: 440-448https://doi.org/10.1007/BF01919313
        • Schultz H.D.
        • Marcus N.J.
        • Del Rio R.
        Role of the carotid body in the pathophysiology of heart failure.
        Curr. Hypertens. Rep. 2013; 15: 356-362https://doi.org/10.1007/s11906-013-0368-x
        • Schwiebert E.M.
        ABC transporter-facilitated ATP conductive transport.
        Am. J. Phys. 1999; 276: C1-C8https://doi.org/10.1152/ajpcell.1999.276.1.C1
        • Semenza G.L.
        • Jiang B.H.
        • Leung S.W.
        • Passantino R.
        • Concordet J.P.
        • Maire P.
        • Giallongo A.
        Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1.
        J. Biol. Chem. 1996; 271: 32529-32537https://doi.org/10.1074/jbc.271.51.32529
        • Sneddon P.
        • Burnstock G.
        ATP as a co-transmitter in rat tail artery.
        Eur. J. Pharmacol. 1984; 106: 149-152https://doi.org/10.1016/0014-2999(84)90688-5
        • Sommer N.
        • Strielkov I.
        • Pak O.
        • Weissmann N.
        Oxygen Sensing and Signal Transduction in Hypoxic Pulmonary Vasoconstriction.
        2015: 1-16https://doi.org/10.1183/13993003.00945-2015 (December)
        • Sommer N.
        • Hüttemann M.
        • Pak O.
        • Scheibe S.
        • Knoepp F.
        • Sinkler C.
        • Malczyk M.
        • Gierhardt M.
        • Esfandiary A.
        • Kraut S.
        • Jonas F.
        • Veith C.
        • Aras S.
        • Sydykov A.
        • Alebrahimdehkordi N.
        • Giehl K.
        • Hecker M.
        • Brandes R.P.
        • Seeger W.
        • Grimminger F.
        • Ghofrani H.A.
        • Schermuly R.T.
        • Grossman L.I.
        • Weissmann N.
        Mitochondrial complex IV subunit 4 isoform 2 is essential for acute pulmonary oxygen sensing.
        Circ. Res. 2017; 121: 424-438https://doi.org/10.1161/CIRCRESAHA.116.310482
        • Sommer N.
        • Alebrahimdehkordi N.
        • Pak O.
        • Knoepp F.
        • Strielkov I.
        • Scheibe S.
        • Dufour E.
        • Andjelković A.
        • Sydykov A.
        • Saraji A.
        • Petrovic A.
        • Quanz K.
        • Hecker M.
        • Kumar M.
        • Wahl J.
        • Kraut S.
        • Seeger W.
        • Schermuly R.T.
        • Ghofrani H.A.
        • Ramser K.
        • Braun T.
        • Jacobs H.T.
        • Weissmann N.
        • Szibor M.
        Bypassing mitochondrial complex III using alternative oxidase inhibits acute pulmonary oxygen sensing.
        Sci. Adv. 2020; 6eaba0694https://doi.org/10.1126/sciadv.aba0694
        • Song X.
        • Gao X.
        • Guo D.
        • Yu Q.
        • Guo W.
        • He C.
        • Burnstock G.
        • Xiang Z.
        Expression of P2X2 and P2X3 receptors in the rat carotid sinus, aortic arch, vena cava, and heart, as well as petrosal and nodose ganglia.
        Purinergic Signal. 2012; 8: 15-22https://doi.org/10.1007/s11302-011-9249-4
        • Sousa F.L.
        • Thiergart T.
        • Landan G.
        • Nelson-Sathi S.
        • IAC Pereira
        • Allen J.F.
        • Lane N.
        • Martin W.F.
        Early bioenergetic evolution.
        Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2013; 368 (20130088-30)https://doi.org/10.1098/rstb.2013.0088
        • Spaans F.
        • de Vos P.
        • Bakker W.W.
        • van Goor H.
        • Faas M.M.
        Danger signals from ATP and adenosine in pregnancy and preeclampsia.
        Hypertension. 2014; 63: 1154-1160https://doi.org/10.1161/HYPERTENSIONAHA.114.03240
        • Stefan C.
        • Gijsbers R.
        • Stalmans W.
        • Bollen M.
        Differential regulation of the expression of nucleotide pyrophosphatases/phosphodiesterases in rat liver.
        Biochim. Biophys. Acta. 1999; 1450: 45-52https://doi.org/10.1016/s0167-4889(99)00031-2
        • Stefan C.
        • Jansen S.
        • Bollen M.
        Modulation of purinergic signaling by NPP-type ectophosphodiesterases.
        Purinergic Signal. 2006; 2: 361-370https://doi.org/10.1007/s11302-005-5303-4
        • Takaki F.
        • Nakamuta N.
        • Kusakabe T.
        • Yamamoto Y.
        Sympathetic and sensory innervation of small intensely fluorescent (SIF) cells in rat superior cervical ganglion.
        Cell Tissue Res. 2015; 359: 441-451https://doi.org/10.1007/s00441-014-2051-1
        • Taruno A.
        ATP release channels.
        Int. J. Mol. Sci. 2018; 19https://doi.org/10.3390/ijms19030808
        • Thomas L.W.
        • Ashcroft M.
        Exploring the molecular interface between hypoxia-inducible factor signalling and mitochondria.
        Cell. Mol. Life Sci. 2019; 76: 1759-1777https://doi.org/10.1007/s00018-019-03039-y
        • Titov D.V.
        • Cracan V.
        • Goodman R.P.
        • Peng J.
        • Grabarek Z.
        • Mootha V.K.
        Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio.
        Science. 2016; 352: 231-235https://doi.org/10.1126/science.aad4017
        • Tompkins J.D.
        • Parsons R.L.
        Exocytotic release of ATP and activation of P2X receptors in dissociated guinea pig stellate neurons.
        AJP Cell Physiol. 2006; 291: C1062-C1071https://doi.org/10.1152/ajpcell.00472.2005
        • Vázquez-Nin G.H.
        • Costero I.
        • Echeverría O.M.
        • Aguilar R.
        • Barroso-Moguel R.
        Innervation of the carotid body. An experimental quantitative study.
        Acta Anat. (Basel). 1978; 102: 12-28https://doi.org/10.1159/000145613
        • Verkhratsky A.
        • Zimmermann H.
        • Abbracchio M.P.
        • Illes P.
        • DiVirgilio F.
        In memoriam Geoffrey Burnstock: creator of purinergic signaling.
        Function. 2020; 1 (239-11)https://doi.org/10.1093/function/zqaa006
        • Verna A.
        • Barets A.
        • Salat C.
        Distribution of sympathetic nerve endings within the rabbit carotid body: a histochemical and ultrastructural study.
        J. Neurocytol. 1984; 13: 849-865https://doi.org/10.1007/BF01148589
        • Villani G.
        • Attardi G.
        In vivo control of respiration by cytochrome c oxidase in human cells.
        Free Radic. Biol. Med. 2000; 29: 202-210https://doi.org/10.1016/s0891-5849(00)00303-8
        • Wang L.
        • Olivecrona G.
        • Götberg M.
        • Olsson M.L.
        • Winzell M.S.
        • Erlinge D.
        ADP acting on P2Y13 receptors is a negative feedback pathway for ATP release from human red blood cells.
        Circ. Res. 2005; 96: 189-196https://doi.org/10.1161/01.RES.0000153670.07559.E4
        • Weil J.V.
        • Stevens T.
        • Pickett C.K.
        • Tatsumi K.
        • Dickinson M.G.
        • Jacoby C.R.
        • Rodman D.M.
        Strain-associated differences in hypoxic chemosensitivity of the carotid body in rats.
        Am. J. Phys. 1998; 274: L767-L774https://doi.org/10.1152/ajplung.1998.274.5.L767
        • Winder C.V.
        On the mechanism of stimulation of carotid gland chemoreceptors.
        Am. J. Phys. 1937; 118: 389-398
        • Winder C.V.
        • Bernthal T.
        • Weeks W.F.
        Reflex hyperpnea and vasoconstriction due to ischemic excitation of the carotid body.
        Am. J. Phys. 1938; 124: 238-245https://doi.org/10.1152/ajplegacy.1938.124.1.238
        • Xue Q.
        • Wang R.
        • Wang L.
        • Xiong B.
        • Li L.
        • Qian J.
        • Hao L.
        • Wang Z.
        • Liu D.
        • Deng C.
        • Rong S.
        • Yao Y.
        • Jiang Y.
        • Zhu Q.
        • Huang J.
        Downregulating the P2X3 receptor in the carotid body to reduce blood pressure via acoustic gene delivery in canines.
        Transl. Res. June 2020; https://doi.org/10.1016/j.trsl.2020.06.005
        • Zera T.
        • DJA Moraes
        • da Silva M.P.
        • Fisher J.P.
        • Paton J.F.R.
        The logic of carotid body connectivity to the brain.
        Physiology (Bethesda). 2019; 34: 264-282https://doi.org/10.1152/physiol.00057.2018
        • Zhang M.
        • Zhong H.
        • Vollmer C.
        • Nurse C.A.
        Co-release of ATP and ACh mediates hypoxic signalling at rat carotid body chemoreceptors.
        J. Physiol. Lond. 2000; 525: 143-158https://doi.org/10.1111/j.1469-7793.2000.t01-1-00143.x
        • Zhang M.
        • Piskuric N.A.
        • Vollmer C.
        • Nurse C.A.
        P2Y2 receptor activation opens pannexin-1 channels in rat carotid body type II cells: potential role in amplifying the neurotransmitter ATP.
        J. Physiol. Lond. 2012; 590: 4335-4350https://doi.org/10.1113/jphysiol.2012.236265
        • Zhao T.V.
        • Li Y.
        • Liu X.
        • Xia S.
        • Shi P.
        • Li L.
        • Chen Z.
        • Yin C.
        • Eriguchi M.
        • Chen Y.
        • Bernstein E.A.
        • Giani J.F.
        • Bernstein K.E.
        • Shen X.Z.
        ATP release drives heightened immune responses associated with hypertension.
        Sci. Immunol. 2019; 4https://doi.org/10.1126/sciimmunol.aau6426
        • Zimmermann H.
        5′-Nucleotidase: molecular structure and functional aspects.
        Biochem. J. 1992; 285: 345-365https://doi.org/10.1042/bj2850345
        • Zimmermann H.
        Extracellular metabolism of ATP and other nucleotides.
        Naunyn Schmiedeberg’s Arch. Pharmacol. 2000; 362: 299-309https://doi.org/10.1007/s002100000309
        • Zimmermann H.
        • Zebisch M.
        • Sträter N.
        Cellular function and molecular structure of ecto-nucleotidases.
        Purinergic Signal. 2012; 8: 437-502https://doi.org/10.1007/s11302-012-9309-4