Advertisement

Autonomic neuromuscular junctions

      Abstract

      This review traces the history of the discovery and subsequent understanding of smooth muscle cells and their motor innervation. Smooth muscle tissue is made up of thousands of very small, individual, electrically connected, muscle cells. Each axon that enters a smooth muscle tissue branches extensively to form a terminal arbour that comes close to hundreds of smooth muscle cells. The branches of the terminal arbour are varicose, and each varicosity, of which there can be thousands, contains numerous transmitter storage vesicles. However, the probability of an individual varicosity releasing transmitter onto the adjacent muscle cells when an action potential passes is low. Many axons influence each muscle cell, some because they release transmitter close to the cell, and some because the events that they cause in other cells are electrically coupled to the cell under investigation. In tissues where this has been assessed, 20 or more axons can influence a single smooth muscle cell. We present a model of the innervation and influence of neurons on smooth muscle.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Autonomic Neuroscience: Basic and Clinical
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abe Y.
        • Tomita T.
        Cable properties of smooth muscle.
        J. Physiol. Lond. 1968; 196: 87-100
        • Bennett M.R.
        • Burnstock G.
        • Holman M.E.
        Transmission from intramural inhibitory nerves to the smooth muscle of the guinea-pig taenia coli.
        J. Physiol. Lond. 1966; 182: 541-558
        • Bennett M.R.
        • Robinson J.
        • Phipps M.C.
        • Karunanithi S.
        • Lin Y.Q.
        • Cottee L.
        Quantal components of spontaneous excitatory junction potentials at visualised varicosities.
        J. Auton. Nerv. Syst. 1996; 56: 161-174
        • Bornstein J.C.
        • Costa M.
        • Furness J.B.
        • Lang R.J.
        Electrophysiological analysis of projections of enteric inhibitory motor neurones in the guinea-pig small intestine.
        J. Physiol. Lond. 1986; 370: 61-74
        • Brain K.L.
        • Jackson V.M.
        • Trout S.J.
        • Cunnane T.C.
        Intermittent ATP release from nerve terminals elicits focal smooth muscle Ca2+ transients in mouse vas deferens.
        J. Physiol. Lond. 2002; 541: 849-862
        • Brink P.R.
        Gap junctions in vascular smooth muscle.
        Acta Physiol. Scand. 1998; 164: 349-356
        • Brock J.A.
        • Cunnane T.C.
        Electrical activity at the sympathetic neuroeffector junction in the guinea-pig vas deferens.
        J. Physiol. Lond. 1988; 399: 607-632
        • Burnstock G.
        The autonomic neuroeffector junction.
        in: Primer on the Autonomic Nervous System. Elsevier, 2004: 29-33
        • Burnstock G.
        • Holman M.E.
        The transmission of excitation from autonomic nerve to smooth muscle.
        J. Physiol. Lond. 1961; 155: 115-133
        • Burnstock G.
        • Holman M.E.
        Smooth muscle: autonomic nerve transmission.
        Annu. Rev. Physiol. 1963; 25: 61-90
        • Cajal S.R.Y.
        Elementos de histologia normal y de technica micrographica.
        Nicolas Moya, Madrid1895
        • Cajal S.R.Y.
        • Tello-Múñoz M.D.
        • Fernán-Núñez M.
        Histology.
        William Wood & Company, Baltimore1933
        • Cannon W.B.
        • Rosenblueth A.
        Autonomic Neuroeffector Systems.
        MacMillan, New York1937
        • Ehinger B.
        • Falck B.
        Concomitant adrenergic and parasympathetic fibres in the rat iris.
        Acta Physiol. Scand. 1966; 67: 201-207
        • Esplugues J.V.
        NO as a signalling molecule in the nervous system.
        Br. J. Pharmacol. 2002; 135: 1079-1095
        • Foster M.
        Kölliker, Rudolph Albert von.
        15. Britannica, Encyclopædia1911
        • Furness J.B.
        The excitatory input to a single smooth muscle cell.
        Pflugers Arch. - Eur. J. Physiol. 1970; 314: 1-13
        • Furness J.B.
        • Iwayama T.
        Terminal axons ensheathed in smooth muscle cells of the vas deferens.
        Z. Zellforsch. 1971; 113: 259-270
        • Gabella G.
        Quantitative morphological study of smooth muscle cells 6g taenia coli.
        Cell Tissue Res. 1976; 170: 161-186
        • Gabella G.
        Cells of visceral smooth muscles.
        J. Smooth Muscle Res. 2012; 48: 65-95
        • Gabella G.
        Muscle cells, nerves, fibroblasts and vessels in the detrusor of the rat urinary bladder.
        J. Smooth Muscle Res. 2019; 55: 34-67
        • Haddock R.E.
        • Hill C.E.
        Rhythmicity in arterial smooth muscle.
        J. Physiol. Lond. 2005; 566: 645-656
        • Hillarp N.Å.
        The construction and functional organization of the autonomic innervation apparatus.
        Acta Physiol. Scand. 1959; 157: 1-38
        • Hirst G.D.S.
        • Neild T.O.
        An analysis of excitatory junctional potentials recorded from arterioles.
        J. Physiol. Lond. 1978; 280: 87-104
        • Jobling P.
        • McLachlan E.M.
        An electrophysiological study of responses evoked in isolated segments of rat tail artery during growth and maturation.
        J. Physiol. Lond. 1992; 454: 83-105
        • Kim T.
        • La J.
        • Lee J.
        • Yang I.
        Effects of nitric oxide on slow waves and spontaneous contraction of guinea pig gastric antral circular muscle.
        J. Pharmacol. Sci. 2003; 92: 337-347
        • Kölliker A.
        Manual of Human Histology v.II.
        Sydenham Society, London1854
        • Larsson L.I.
        • Fahrenkrug J.
        • Schaffalitzky de Muckadell O.
        • Sundler F.
        • Håkanson R.
        • Rehfeld J.F.
        Localization of vasoactive intestinal polypeptide VIP to central and peripheral neurons.
        Proc. Natl. Acad. Sci. U. S. A. 1976; 73: 3197-3200
        • Macefield V.G.
        Recording and quantifying sympathetic outflow to muscle and skin in humans: methods, caveats and challenges.
        Clin. Auton. Res. 2021; 31: 59-75
        • Macefield V.G.
        • Wallin B.G.
        Physiological and pathophysiological firing properties of single postganglionic sympathetic neurons in humans.
        J. Neurophysiol. 2018; 119: 944-956
        • Macefield V.G.
        • Elam M.
        • Wallin B.G.
        Firing properties of single postganglionic sympathetic neurones recorded in awake human subjects.
        Auton. Neurosci. 2002; 95: 146-159
        • McHale N.
        • Hollywood M.
        • Sergeant G.
        • Thornbury K.
        Origin of spontaneous rhythmicity in smooth muscle.
        J. Physiol. Lond. 2006; 570: 23-28
        • Merrillees N.C.R.
        The nervous environment of individual smooth muscle cells of the guinea pig vas deferens.
        J. Cell Biol. 1968; 37: 794-817
        • Morris J.L.
        • Gibbins I.L.
        Postganglionic neurotransmitter.
        in: Binder M.D. Hirokawa N. Windhorst U. Encyclopedia of Neuroscience. Springer, Berlin, Heidelberg2009
        • Muir T.C.
        • Wardle K.A.
        The electrical and mechanical basis of co-transmission in some vascular and non-vascular smooth muscles.
        J. Auton. Pharmacol. 1988; 8: 203-218
        • Nilsson H.
        • Goldstein M.
        • Nilsson O.
        Adrenergic innervation and neurogenic response in large and small arteries and veins from the rat.
        Acta Physiol. Scand. 1986; 126: 121-133
        • Nurgali K.
        • Stebbing M.J.
        • Furness J.B.
        Correlation of electrophysiological and morphological characteristics of enteric neurons in the mouse colon.
        J. Comp. Neurol. 2004; 468: 112-124
        • Pezzone M.A.
        • Watkins S.C.
        • Alber S.M.
        • King W.E.
        • de Groat W.C.
        • Chancellor M.B.
        • Fraser M.O.
        Identification of c-kit-positive cells in the mouse ureter: the interstitial cells of Cajal of the urinary tract.
        Am. J. Physiol. Ren. Physiol. 2003; 284: 925-929
        • Richardson K.C.
        Studies on the structure of autonomic nerves in the small intestine, correlating the silver impregnated image in light microscopy with the permanganate fixed ultrastructure in electronmicroscopy.
        J. Anat. 1960; 94: 457-472
        • Richardson K.C.
        The fine structure of autonomic nerve endings in smooth muscle of the rat vas deferens.
        J. Anat. 1962; 96: 427-442
        • Sanders K.M.
        Spontaneous electrical activity and rhythmicity in gastrointestinal smooth muscles.
        Adv. Exp. Med. Biol. 2019; 1124: 3-46
        • Sanders K.M.
        • Kito Y.
        • Hwang S.J.
        • Ward S.M.
        Regulation of gastrointestinal smooth muscle function by interstitial cells.
        Physiology. 2016; 31: 316-326
        • Shoemaker J.K.
        • Klassen S.A.
        • Badrov M.B.
        • Fadel P.J.
        Fifty years of microneurography: learning the language of the peripheral sympathetic nervous system in humans.
        J. Neurophysiol. 2018; 119: 1731-1744
        • Tomita T.
        Electrophysiology of mammalian smooth muscle.
        Prog. Biophys. Mol. Biol. 1976; 30: 185-203
        • Young H.M.
        • McConalogue K.
        • Furness J.B.
        • De Vente J.
        Nitric oxide targets in the guinea-pig intestine identified by induction of cyclic GMP immunoreactivity.
        Neuroscience. 1993; 55: 583-596