Advertisement

Purinergic signalling in the kidney – A beginning with Geoffrey Burnstock

      Abstract

      This not an original publication or a current and up-to-date review of purinergic signalling and kidney function, but rather a tribute to Professor Geoffrey Burnstock, written as a short and personal memoir of our early collaborative work together on this topic: our beginnings and the subsequent journey we took with our many valued collaborators along the way.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Autonomic Neuroscience: Basic and Clinical
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Arulkumaran N.
        • Unwin R.J.
        • Tam F.W.
        A potential therapeutic role for P2X7 receptor (P2X7R) antagonists in the treatment of inflammatory diseases.
        Expert Opin. Investig. Drugs. 2011; 20: 897-915https://doi.org/10.1517/13543784.2011.578068
        • Bailey M.A.
        • Imbert-Teboul M.
        • Turner C.
        • Marsy S.
        • Srai K.
        • Burnstock G.
        • Unwin R.J.
        Axial distribution and characterization of basolateral P2Y receptors along the rat renal tubule.
        Kidney Int. 2000; 58: 1893-1901https://doi.org/10.1111/j.1523-1755.2000.00361.x
        • Bailey M.A.
        • Imbert-Teboul M.
        • Turner C.
        • Srai S.K.
        • Burnstock G.
        • Unwin R.J.
        Evidence for basolateral P2Y(6) receptors along the rat proximal tubule: functional and molecular characterization.
        J. Am. Soc. Nephrol. 2001; 12: 1640-1647
        • Bailey M.A.
        • Turner C.M.
        • Hus-Citharel A.
        • Marchetti J.
        • Imbert-Teboul M.
        • Milner P.
        • Burnstock G.
        • Unwin R.J.
        P2Y receptors present in the native and isolated rat glomerulus.
        Nephron Physiol. 2004; 96: 79-90https://doi.org/10.1159/000076753
        • Bo X.
        • Schoepfer R.
        • Burnstock G.
        Molecular cloning and characterization of a novel ATP P2X receptor subtype from embryonic chick skeletal muscle.
        J. Biol. Chem. 2000; 275: 14401-14407https://doi.org/10.1074/jbc.275.19.14401
        • Bogdanov Y.D.
        • Wildman S.S.
        • Clements M.P.
        • King B.F.
        • Burnstock G.
        Molecular cloning and characterization of rat P2Y4 nucleotide receptor.
        Br. J. Pharmacol. 1998; 124: 428-430https://doi.org/10.1038/sj.bjp.0701880
        • Booth J.W.R.
        • Tam F.W.K.
        • Unwin R.J.
        P2 purinoceptors: renal pathophysiology and therapeutic potential.
        CN. 2012; 78: 154-163https://doi.org/10.5414/CN107325
        • Bryant M.G.
        • Bloom S.R.
        Distribution of the gut hormones in the primate intestinal tract.
        Gut. 1979; 20: 653-659https://doi.org/10.1136/gut.20.8.653
        • Burnstock G.
        • Cocks T.
        • Kasakov L.
        • Wong H.K.
        Direct evidence for ATP release from non-adrenergic, non-cholinergic (“purinergic”) nerves in the guinea-pig taenia coli and bladder.
        Eur. J. Pharmacol. 1978; 49: 145-149https://doi.org/10.1016/0014-2999(78)90070-5
        • Chan C.M.
        • Unwin R.J.
        • Bardini M.
        • Oglesby I.B.
        • Ford A.P.
        • Townsend-Nicholson A.
        • Burnstock G.
        Localization of P2X1 purinoceptors by autoradiography and immunohistochemistry in rat kidneys.
        Am. J. Phys. 1998; 274: F799-F804
        • Chan C.M.
        • Unwin R.J.
        • Burnstock G.
        Potential functional roles of extracellular ATP in kidney and urinary tract.
        Exp. Nephrol. 1998; 6: 200-207
        • Coca S.G.
        • Nadkarni G.N.
        • Huang Y.
        • Moledina D.G.
        • Rao V.
        • Zhang J.
        • Ferket B.
        • Crowley S.T.
        • Fried L.F.
        • Parikh C.R.
        Plasma biomarkers and kidney function decline in early and established diabetic kidney disease.
        J. Am. Soc. Nephrol. 2017; 2016101101–8https://doi.org/10.1681/ASN.2016101101
        • Crawford C.
        • Wildman S.S.P.
        • Kelly M.C.
        • Kennedy-Lydon T.M.
        • Peppiatt-Wildman C.M.
        Sympathetic nerve-derived ATP regulates renal medullary vasa recta diameter via pericyte cells: a role for regulating medullary blood flow?.
        Front. Physiol. 2013; 4: 307https://doi.org/10.3389/fphys.2013.00307
        • Di Virgilio F.
        • Sarti A.C.
        • Coutinho-Silva R.
        Purinergic signaling, DAMPs, and inflammation.
        Am. J. Physiol. Cell Physiol. 2020; 318: C832-C835https://doi.org/10.1152/ajpcell.00053.2020
        • Fogo A.B.
        Mesangial matrix modulation and glomerulosclerosis.
        Exp. Nephrol. 1999; 7: 147-159https://doi.org/10.1159/000020595
        • Hanaoka K.
        • Devuyst O.
        • Schwiebert E.M.
        • Wilson P.D.
        • Guggino W.B.
        A role for CFTR in human autosomal dominant polycystic kidney disease.
        Am. J. Phys. 1996; 270: C389-C399https://doi.org/10.1152/ajpcell.1996.270.1.C389
        • Harada H.
        • Chan C.M.
        • Loesch A.
        • Unwin R.
        • Burnstock G.
        Induction of proliferation and apoptotic cell death via P2Y and P2X receptors, respectively, in rat glomerular mesangial cells.
        Kidney Int. 2000; 57: 949-958https://doi.org/10.1046/j.1523-1755.2000.00911.x
        • Hillman Katherine A.
        • Johnson T.M.
        • Winyard P.J.D.
        • Burnstock G.
        • Unwin R.J.
        • Woolf A.S.
        P2X(7) receptors are expressed during mouse nephrogenesis and in collecting duct cysts of the cpk/cpk mouse.
        Exp. Nephrol. 2002; 10: 34-42
        • Hillman Kate A.
        • Harada H.
        • Chan C.M.
        • Townsend-Nicholson A.
        • Moss S.E.
        • Miyamoto K.
        • Suketa Y.
        • Burnstock G.
        • Unwin R.J.
        • Dunn P.M.
        Chicken DT40 cells stably transfected with the rat P2X7 receptor ion channel: a system suitable for the study of purine receptor-mediated cell death.
        Biochem. Pharmacol. 2003; 66: 415-424
        • Hillman K.A.
        • Burnstock G.
        • Unwin R.J.
        The P2X7 ATP receptor in the kidney: a matter of life or death?.
        Nephron Exp. Nephrol. 2005; 101: e24-e30https://doi.org/10.1159/000086036
        • Inscho E.W.
        • Mitchell K.D.
        • Navar L.G.
        Extracellular ATP in the regulation of renal microvascular function.
        FASEB J. 1994; 8: 319-328https://doi.org/10.1096/fasebj.8.3.8143938
        • Köttgen M.
        • Löffler T.
        • Jacobi C.
        • Nitschke R.
        • Pavenstädt H.
        • Schreiber R.
        • Frische S.
        • Nielsen S.
        • Leipziger J.
        P2Y6 receptor mediates colonic NaCl secretion via differential activation of cAMP-mediated transport.
        J. Clin. Invest. 2003; 111: 371-379https://doi.org/10.1172/JCI16711
        • Loesch A.
        • Unwin R.J.
        • Gandhi V.
        • Burnstock G.
        Sympathetic nerve varicosities in close apposition to basolateral membranes of collecting duct epithelial cells of rat kidney.
        Nephron Physiol. 2009; 113: p15-p21https://doi.org/10.1159/000235246
        • Menzies R.I.
        • Howarth A.R.
        • Unwin R.J.
        • Tam F.W.K.
        • Mullins J.J.
        • Bailey M.A.
        Inhibition of the purinergic P2X7 receptor improves renal perfusion in angiotensin-II-infused rats.
        Kidney Int. 2015; https://doi.org/10.1038/ki.2015.182
        • Michell A.R.
        • Debnam E.S.
        • Unwin R.J.
        Regulation of renal function by the gastrointestinal tract: potential role of gut-derived peptides and hormones.
        Annu. Rev. Physiol. 2008; 70: 379-403https://doi.org/10.1146/annurev.physiol.69.040705.141330
        • Moller D.E.
        Potential role of TNF-alpha in the pathogenesis of insulin resistance and type 2 diabetes.
        Trends Endocrinol. Metab. 2000; 11: 212-217https://doi.org/10.1016/s1043-2760(00)00272-1
        • Potthoff S.A.
        • Stegbauer J.
        • Becker J.
        • Wagenhaeuser P.J.
        • Duvnjak B.
        • Rump L.C.
        • Vonend O.
        P2Y2 receptor deficiency aggravates chronic kidney disease progression.
        Front. Physiol. 2013; 4: 234https://doi.org/10.3389/fphys.2013.00234
        • Robson S.C.
        Role of CD73 and extracellular adenosine in disease.
        Purinergic Signal. 2011; 7: 367-372https://doi.org/10.1007/s11302-011-9265-4
        • Saul A.
        • Hausmann R.
        • Kless A.
        • Nicke A.
        Heteromeric assembly of P2X subunits.
        Front. Cell. Neurosci. 2013; 7: 250https://doi.org/10.3389/fncel.2013.00250
        • Shokoples B.G.
        • Paradis P.
        • Schiffrin E.L.
        P2X7 receptors: an untapped target for the management of cardiovascular disease.
        Arterioscler. Thromb. Vasc. Biol. 2021; 41: 186-199https://doi.org/10.1161/ATVBAHA.120.315116
        • Taylor S.R.J.
        • Turner C.M.
        • Elliott J.I.
        • McDaid J.
        • Hewitt R.
        • Smith J.
        • Pickering M.C.
        • Whitehouse D.L.
        • Cook H.T.
        • Burnstock G.
        • Pusey C.D.
        • Unwin R.J.
        • Tam F.W.K.
        P2X7 deficiency attenuates renal injury in experimental glomerulonephritis.
        J. Am. Soc. Nephrol. 2009; 20: 1275-1281https://doi.org/10.1681/ASN.2008060559
        • Toki Y.
        • Takenouchi T.
        • Harada H.
        • Tanuma S.-I.
        • Kitani H.
        • Kojima S.
        • Tsukimoto M.
        Extracellular ATP induces P2X7 receptor activation in mouse Kupffer cells, leading to release of IL-1β, HMGB1, and PGE2, decreased MHC class I expression and necrotic cell death.
        Biochem. Biophys. Res. Commun. 2015; 458: 771-776https://doi.org/10.1016/j.bbrc.2015.02.011
        • Turner C.M.
        • Vonend O.
        • Chan C.
        • Burnstock G.
        • Unwin R.J.
        The pattern of distribution of selected ATP-sensitive P2 receptor subtypes in normal rat kidney: an immunohistological study.
        Cells Tissues Organs. 2003; 175: 105-117https://doi.org/10.1159/000073754
        • Turner C.M.
        • Ramesh B.
        • Srai S.K.S.
        • Burnstock G.
        • Unwin R.J.
        Altered ATP-sensitive P2 receptor subtype expression in the Han:SPRD cy/+ rat, a model of autosomal dominant polycystic kidney disease.
        Cells Tissues Organs. 2004; 178: 168-179https://doi.org/10.1159/000082247
        • Turner C.M.
        • Tam F.W.K.
        • Lai P.-C.
        • Tarzi R.M.
        • Burnstock G.
        • Pusey C.D.
        • Cook H.T.
        • Unwin R.J.
        Increased expression of the pro-apoptotic ATP-sensitive P2X7 receptor in experimental and human glomerulonephritis.
        Nephrol. Dial. Transplant. 2007; 22: 386-395https://doi.org/10.1093/ndt/gfl589
        • Unwin R.J.
        • Bailey M.A.
        • Burnstock G.
        Purinergic signaling along the renal tubule: the current state of play.
        News Physiol. Sci. 2003; 18: 237-241
        • Vallon V.
        • Unwin R.J.
        • Inscho E.W.
        • Leipziger J.
        • Kishore B.K.
        Extracellular nucleotides and P2 receptors in renal function.
        Physiol. Rev. 2020; 100: 211-269https://doi.org/10.1152/physrev.00038.2018
        • Vekaria R.M.
        • Shirley D.G.
        • Sévigny J.
        • Unwin R.J.
        Immunolocalization of ectonucleotidases along the rat nephron.
        Am. J. Physiol. Renal Physiol. 2006; 290: F550-F560https://doi.org/10.1152/ajprenal.00151.2005
        • Vonend O.
        • Turner C.M.
        • Chan C.M.
        • Loesch A.
        • Dell’Anna G.C.
        • Srai K.S.
        • Burnstock G.
        • Unwin R.J.
        Glomerular expression of the ATP-sensitive P2X receptor in diabetic and hypertensive rat models.
        Kidney Int. 2004; 66: 157-166https://doi.org/10.1111/j.1523-1755.2004.00717.x
        • Wildman S.S.
        • Brown S.G.
        • Rahman M.
        • Noel C.A.
        • Churchill L.
        • Burnstock G.
        • Unwin R.J.
        • King B.F.
        Sensitization by extracellular Ca(2+) of rat P2X(5) receptor and its pharmacological properties compared with rat P2X(1).
        Mol. Pharmacol. 2002; 62: 957-966
        • Wildman S.S.
        • Marks J.
        • Churchill L.J.
        • Peppiatt C.M.
        • Chraibi A.
        • Shirley D.G.
        • Horisberger J.-D.
        • King B.F.
        • Unwin R.J.
        Regulatory interdependence of cloned epithelial Na+ channels and P2X receptors.
        J. Am. Soc. Nephrol. 2005; 16: 2586-2597https://doi.org/10.1681/ASN.2005020130
        • Wildman S.S.P.
        • Marks J.
        • Turner C.M.
        • Yew-Booth L.
        • Peppiatt-Wildman C.M.
        • King B.F.
        • Shirley D.G.
        • Wang W.
        • Unwin R.J.
        Sodium-dependent regulation of renal amiloride-sensitive currents by apical P2 receptors.
        J. Am. Soc. Nephrol. 2008; 19: 731-742https://doi.org/10.1681/ASN.2007040443
        • Wildman S.S.P.
        • Boone M.
        • Peppiatt-Wildman C.M.
        • Contreras-Sanz A.
        • King B.F.
        • Shirley D.G.
        • Deen P.M.T.
        • Unwin R.J.
        Nucleotides downregulate aquaporin 2 via activation of apical P2 receptors.
        J. Am. Soc. Nephrol. 2009; 20: 1480-1490https://doi.org/10.1681/ASN.2008070686
        • Wilson P.D.
        • Hovater J.S.
        • Casey C.C.
        • Fortenberry J.A.
        • Schwiebert E.M.
        ATP release mechanisms in primary cultures of epithelia derived from the cysts of polycystic kidneys.
        J. Am. Soc. Nephrol. 1999; 10: 218-229
        • Winding P.
        • Berchtold M.W.
        The chicken B cell line DT40: a novel tool for gene disruption experiments.
        J. Immunol. Methods. 2001; 249: 1-16https://doi.org/10.1016/s0022-1759(00)00333-1
        • Yamaguchi T.
        • Pelling J.C.
        • Ramaswamy N.T.
        • Eppler J.W.
        • Wallace D.P.
        • Nagao S.
        • Rome L.A.
        • Sullivan L.P.
        • Grantham J.J.
        cAMP stimulates the in vitro proliferation of renal cyst epithelial cells by activating the extracellular signal-regulated kinase pathway.
        Kidney Int. 2000; 57: 1460-1471https://doi.org/10.1046/j.1523-1755.2000.00991.x