Reflex regulation of systemic inflammation by the autonomic nervous system

Published:November 30, 2021DOI:https://doi.org/10.1016/j.autneu.2021.102926

      Abstract

      This short review focusses on the inflammatory reflex, which acts in negative feedback manner to moderate the inflammatory consequences of systemic microbial challenge. The historical development of the inflammatory reflex concept is reviewed, along with evidence that the endogenous reflex response to systemic inflammation is mediated by the splanchnic sympathetic nerves rather than by the vagi. We describe the coordinated nature of this reflex anti-inflammatory action: suppression of pro-inflammatory cytokines coupled with enhanced levels of the anti-inflammatory cytokine, interleukin 10. The limited information on the afferent and central pathways of the reflex is noted. We describe that the efferent anti-inflammatory action of the reflex is distributed among the abdominal viscera: several organs, including the spleen, can be removed without disabling the reflex. Understanding of the effector mechanism is incomplete, but it probably involves a very local action of neurally released noradrenaline on beta2 adrenoceptors on the surface of tissue resident macrophages and other innate immune cells. Finally we speculate on the biological and clinical significance of the reflex, citing evidence of its power to influence the resolution of experimental bacteraemia.
      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Autonomic Neuroscience: Basic and Clinical
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abe C.
        • Inoue T.
        • Inglis M.A.
        • Viar K.E.
        • Huang L.
        • Ye H.
        • Rosin D.L.
        • Stornetta R.L.
        • Okusa M.D.
        • Guyenet P.G.
        C1 neurons mediate a stress-induced anti-inflammatory reflex in mice.
        Nat. Neurosci. 2017; 20: 700-707
        • Ackland G.L.
        • Kazymov V.
        • Marina N.
        • Singer M.
        • Gourine A.V.
        Peripheral neural detection of danger-associated and pathogen-associated molecular patterns.
        Crit. Care Med. 2013; 41: e85-e92
        • Agac D.
        • Estrada L.D.
        • Maples R.
        • Hooper L.V.
        • Farrar J.D.
        The beta2-adrenergic receptor controls inflammation by driving rapid IL-10 secretion.
        Brain Behav. Immun. 2018; 74: 176-185
        • Baker J.G.
        The selectivity of beta-adrenoceptor agonists at human beta1-, beta2- and beta3-adrenoceptors.
        Br. J. Pharmacol. 2010; 160: 1048-1061
        • Barajon I.
        • Serrao G.
        • Arnaboldi F.
        • Opizzi E.
        • Ripamonti G.
        • Balsari A.
        • Rumio C.
        Toll-like receptors 3, 4, and 7 are expressed in the enteric nervous system and dorsal root ganglia.
        J. Histochem. Cytochem. 2009; 57: 1013-1023
        • Bellinger D.L.
        • Lorton D.
        Autonomic regulation of cellular immune function.
        Auton. Neurosci. 2014; 182: 15-41
        • Berkenbosch F.
        • van Oers J.
        • del Rey A.
        • Tilders F.
        • Besedovsky H.
        Corticotropin-releasing factor-producing neurons in the rat activated by interleukin-1.
        Science. 1987; 238: 524-526
        • Besedovsky H.O.
        • del Rey A.
        • Sorkin E.
        • Da Prada M.
        • Keller H.H.
        Immunoregulation mediated by the sympathetic nervous system.
        Cell. Immunol. 1979; 48: 346-355
        • Besedovsky H.
        • del Rey A.
        • Sorkin E.
        • Dinarello C.A.
        Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones.
        Science. 1986; 233: 652-654
        • Borovikova L.V.
        • Ivanova S.
        • Zhang M.
        • Yang H.
        • Botchkina G.I.
        • Watkins L.R.
        • Wang H.
        • Abumrad N.
        • Eaton J.W.
        • Tracey K.J.
        Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin.
        Nature. 2000; 405: 458-462
        • Donega M.
        • Fjordbakk C.T.
        • Kirk J.
        • Sokal D.M.
        • Gupta I.
        • Hunsberger G.E.
        • Crawford A.
        • Cook S.
        • Viscasillas J.
        • Stathopoulou T.R.
        • Miranda J.A.
        • Dopson W.J.
        • Goodwin D.
        • Rowles A.
        • McGill P.
        • McSloy A.
        • Werling D.
        • Witherington J.
        • Chew D.J.
        • Perkins J.D.
        Human-relevant near-organ neuromodulation of the immune system via the splenic nerve.
        Proc. Natl. Acad. Sci. U. S. A. 2021; : 118
        • Elenkov I.J.
        Effects of catecholamines on the immune response.
        Neuroimmune. 2008; 7: 189-206
        • Elenkov I.J.
        • Hasko G.
        • Kovacs K.J.
        • Vizi E.S.
        Modulation of lipopolysaccharide-induced tumor necrosis factor-alpha production by selective alpha- and beta-adrenergic drugs in mice.
        J. Neuroimmunol. 1995; 61: 123-131
        • Elenkov I.J.
        • Wilder R.L.
        • Chrousos G.P.
        • Vizi E.S.
        The sympathetic nerve–an integrative interface between two supersystems: the brain and the immune system.
        Pharmacol. Rev. 2000; 52: 595-638
        • Engstrom L.
        • Ruud J.
        • Eskilsson A.
        • Larsson A.
        • Mackerlova L.
        • Kugelberg U.
        • Qian H.
        • Vasilache A.M.
        • Larsson P.
        • Engblom D.
        • Sigvardsson M.
        • Jonsson J.I.
        • Blomqvist A.
        Lipopolysaccharide-induced fever depends on prostaglandin E2 production specifically in brain endothelial cells.
        Endocrinology. 2012; 153: 4849-4861
        • Felten S.Y.
        • Olschowka J.
        Noradrenergic sympathetic innervation of the spleen: II. Tyrosine hydroxylase (TH)-positive nerve terminals form synapticlike contacts on lymphocytes in the splenic white pulp.
        J. Neurosci. Res. 1987; 18: 37-48
        • Fonseca M.T.
        • Moretti E.H.
        • Marques L.M.M.
        • Machado B.F.
        • Brito C.F.
        • Guedes J.T.
        • Komegae E.N.
        • Vieira T.S.
        • Festuccia W.T.
        • Lopes N.P.
        • Steiner A.A.
        A leukotriene-dependent spleen-liver axis drives TNF production in systemic inflammation.
        Sci. Signal. 2021; 14
        • Goehler L.E.
        • Gaykema R.P.
        • Hansen M.K.
        • Anderson K.
        • Maier S.F.
        • Watkins L.R.
        Vagal immune-to-brain communication: a visceral chemosensory pathway.
        Auton. Neurosci. 2000; 85: 49-59
        • Huston J.M.
        • Ochani M.
        • Rosas-Ballina M.
        • Liao H.
        • Ochani K.
        • Pavlov V.A.
        • Gallowitsch-Puerta M.
        • Ashok M.
        • Czura C.J.
        • Foxwell B.
        • Tracey K.J.
        • Ulloa L.
        Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis.
        J. Exp. Med. 2006; 203: 1623-1628
        • Kakizaki Y.
        • Watanobe H.
        • Kohsaka A.
        • Suda T.
        Temporal profiles of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in the plasma and hypothalamic paraventricular nucleus after intravenous or intraperitoneal administration of lipopolysaccharide in the rat: estimation by push-pull perfusion.
        Endocr. J. 1999; 46: 487-496
        • Katafuchi T.
        • Ichijo T.
        • Take S.
        • Hori T.
        Hypothalamic modulation of splenic natural killer cell activity in rats.
        J. Physiol. 1993; 471: 209-221
        • Katafuchi T.
        • Take S.
        • Hori T.
        Roles of sympathetic nervous system in the suppression of cytotoxicity of splenic natural killer cells in the rat.
        J. Physiol. 1993; 465: 343-357
        • Komegae E.N.
        • Farmer D.G.S.
        • Brooks V.L.
        • McKinley M.J.
        • McAllen R.M.
        • Martelli D.
        Vagal afferent activation suppresses systemic inflammation via the splanchnic anti-inflammatory pathway.
        Brain Behav. Immun. 2018; 73: 441-449
        • Korim W.S.
        • Elsaafien K.
        • Basser J.R.
        • Setiadi A.
        • May C.N.
        • Yao S.T.
        In renovascular hypertension, TNF-alpha type-1 receptors in the area postrema mediate increases in cardiac and renal sympathetic nerve activity and blood pressure.
        Cardiovasc. Res. 2019; 115: 1092-1101
        • Korsak A.
        • Gilbey M.P.
        Rostral ventromedial medulla and the control of cutaneous vasoconstrictor activity following i.C.V. Prostaglandin E(1).
        Neuroscience. 2004; 124: 709-717
        • Kressel A.M.
        • Tsaava T.
        • Levine Y.A.
        • Chang E.H.
        • Addorisio M.E.
        • Chang Q.
        • Burbach B.J.
        • Carnevale D.
        • Lembo G.
        • Zador A.M.
        • Andersson U.
        • Pavlov V.A.
        • Chavan S.S.
        • Tracey K.J.
        Identification of a brainstem locus that inhibits tumor necrosis factor.
        Proc. Natl. Acad. Sci. U. S. A. 2020; 117: 29803-29810
        • Lankadeva Y.R.
        • May C.N.
        • McKinley M.J.
        • Neeland M.R.
        • Ma S.
        • Hocking D.M.
        • Robins-Browne R.
        • Bedoui S.
        • Farmer D.G.S.
        • Bailey S.R.
        • Martelli D.
        • McAllen R.M.
        Sympathetic nerves control bacterial clearance.
        Sci. Rep. 2020; 10: 15009
        • Lazarus M.
        • Yoshida K.
        • Coppari R.
        • Bass C.E.
        • Mochizuki T.
        • Lowell B.B.
        • Saper C.B.
        EP3 prostaglandin receptors in the median preoptic nucleus are critical for fever responses.
        Nat. Neurosci. 2007; 10: 1131-1133
        • Li S.
        • Wang Y.
        • Matsumura K.
        • Ballou L.R.
        • Morham S.G.
        • Blatteis C.M.
        The febrile response to lipopolysaccharide is blocked in cyclooxygenase-2(-/-), but not in cyclooxygenase-1(-/-) mice.
        Brain Res. 1999; 825: 86-94
        • Liu S.
        • Wang Z.F.
        • Su Y.S.
        • Ray R.S.
        • Jing X.H.
        • Wang Y.Q.
        • Ma Q.
        Somatotopic organization and intensity dependence in driving distinct NPY-expressing sympathetic pathways by electroacupuncture.
        Neuron. 2020; 108e437
        • Martelli D.
        • McKinley M.J.
        • McAllen R.M.
        The cholinergic anti-inflammatory pathway: a critical review.
        Auton. Neurosci. 2014; 182: 65-69
        • Martelli D.
        • Yao S.T.
        • Mancera J.
        • McKinley M.J.
        • McAllen R.M.
        Reflex control of inflammation by the splanchnic anti-inflammatory pathway is sustained and independent of anesthesia.
        Am. J. Phys. Regul. Integr. Comp. Phys. 2014; 307: R1085-R1091
        • Martelli D.
        • Yao S.T.
        • McKinley M.J.
        • McAllen R.M.
        Reflex control of inflammation by sympathetic nerves, not the vagus.
        J. Physiol. 2014; 592: 1677-1686
        • Martelli D.
        • Farmer D.G.
        • Yao S.T.
        The splanchnic anti-inflammatory pathway: could it be the efferent arm of the inflammatory reflex?.
        Exp. Physiol. 2016; 101: 1245-1252
        • Martelli D.
        • Farmer D.G.S.
        • McKinley M.J.
        • Yao S.T.
        • McAllen R.M.
        Anti-inflammatory reflex action of splanchnic sympathetic nerves is distributed across abdominal organs.
        Am. J. Phys. Regul. Integr. Comp. Phys. 2019; 316: R235-R242
        • McKinley M.J.
        • McAllen R.M.
        • Davern P.
        • Giles M.E.
        • Penschow J.
        • Sunn N.
        • Uschakov A.
        • Oldfield B.J.
        The sensory circumventricular organs of the mammalian brain.
        Adv. Anat. Embryol. Cell Biol. 2003; 172: 1-122
        • Meltzer J.C.
        • MacNeil B.J.
        • Sanders V.
        • Pylypas S.
        • Jansen A.H.
        • Greenberg A.H.
        • Nance D.M.
        Contribution of the adrenal glands and splenic nerve to LPS-induced splenic cytokine production in the rat.
        Brain Behav. Immun. 2003; 17: 482-497
        • Morrison S.F.
        Raphe pallidus neurons mediate prostaglandin E2-evoked increases in brown adipose tissue thermogenesis.
        Neuroscience. 2003; 121: 17-24
        • Murray K.
        • Barboza M.
        • Rude K.M.
        • Brust-Mascher I.
        • Reardon C.
        Functional circuitry of neuro-immune communication in the mesenteric lymph node and spleen.
        Brain Behav. Immun. 2019; 82: 214-223
        • Murray K.
        • Rude K.M.
        • Sladek J.
        • Reardon C.
        Divergence of neuroimmune circuits activated by afferent and efferent vagal nerve stimulation in the regulation of inflammation.
        J. Physiol. 2021; 599: 2075-2084
        • Nance D.M.
        • Sanders V.M.
        Autonomic innervation and regulation of the immune system (1987–2007).
        Brain Behav. Immun. 2007; 21: 736-745
        • Niijima A.
        The afferent discharges from sensors for interleukin 1 beta in the hepatoportal system in the anesthetized rat.
        J. Auton. Nerv. Syst. 1996; 61: 287-291
        • Occhinegro A.
        • Wong C.Y.
        • Chua B.Y.
        • Jackson D.C.
        • McKinley M.J.
        • McAllen R.M.
        • Martelli D.
        The endogenous inflammatory reflex inhibits the inflammatory response to different immune challenges in mice.
        Brain Behav. Immun. 2021; 97: 371-375
        • Olofsson P.S.
        • Rosas-Ballina M.
        • Levine Y.A.
        • Tracey K.J.
        Rethinking inflammation: neural circuits in the regulation of immunity.
        Immunol. Rev. 2012; 248: 188-204
        • Porzionato A.
        • Macchi V.
        • De Caro R.
        • Di Giulio C.
        Inflammatory and immunomodulatory mechanisms in the carotid body.
        Respir. Physiol. Neurobiol. 2013; 187: 31-40
        • Rosas-Ballina M.
        • Tracey K.J.
        Cholinergic control of inflammation.
        J. Intern. Med. 2009; 265: 663-679
        • Rosas-Ballina M.
        • Olofsson P.S.
        • Ochani M.
        • Valdes-Ferrer S.I.
        • Levine Y.A.
        • Reardon C.
        • Tusche M.W.
        • Pavlov V.A.
        • Andersson U.
        • Chavan S.
        • Mak T.W.
        • Tracey K.J.
        Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit.
        Science. 2011; 334: 98-101
        • Ross G.
        • Roth J.
        • Storr B.
        • Voigt K.
        • Zeisberger E.
        Afferent nerves are involved in the febrile response to injection of LPS into artificial subcutaneous chambers in Guinea pigs.
        Physiol. Behav. 2000; 71: 305-313
        • Roth J.
        • Harre E.M.
        • Rummel C.
        • Gerstberger R.
        • Hubschle T.
        Signaling the brain in systemic inflammation: role of sensory circumventricular organs.
        Front. Biosci. 2004; 9: 290-300
        • Saper C.B.
        Neurobiological basis of fever.
        Ann. N. Y. Acad. Sci. 1998; 856: 90-94
        • Sokal D.M.
        • McSloy A.
        • Donega M.
        • Kirk J.
        • Colas R.A.
        • Dolezalova N.
        • Gomez E.A.
        • Gupta I.
        • Fjordbakk C.T.
        • Ouchouche S.
        • Matteucci P.B.
        • Schlegel K.
        • Bashirullah R.
        • Werling D.
        • Harman K.
        • Rowles A.
        • Yazicioglu R.F.
        • Dalli J.
        • Chew D.J.
        • Perkins J.D.
        Splenic nerve neuromodulation reduces inflammation and promotes resolution in chronically implanted pigs.
        Front. Immunol. 2021; 12649786
        • Soto-Tinoco E.
        • Santacruz E.
        • Basualdo-Sigales M.D.C.
        • Guerrero-Vargas N.N.
        • Buijs R.M.
        Time-of-day-dependent gating of the liver-spinal axis initiates an anti-inflammatory reflex in the rat.
        eNeuro. 2020; : 7
        • Tanaka M.
        • McKinley M.J.
        • McAllen R.M.
        Role of an excitatory preoptic-raphe pathway in febrile vasoconstriction of the rat's tail.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013; 305: R1479-R1489
        • Tanaka S.
        • Abe C.
        • Abbott S.B.G.
        • Zheng S.
        • Yamaoka Y.
        • Lipsey J.E.
        • Skrypnyk N.I.
        • Yao J.
        • Inoue T.
        • Nash W.T.
        • Stornetta D.S.
        • Rosin D.L.
        • Stornetta R.L.
        • Guyenet P.G.
        • Okusa M.D.
        Vagus nerve stimulation activates two distinct neuroimmune circuits converging in the spleen to protect mice from kidney injury.
        Proc. Natl. Acad. Sci. U. S. A. 2021; : 118
        • Teratani T.
        • Mikami Y.
        • Nakamoto N.
        • Suzuki T.
        • Harada Y.
        • Okabayashi K.
        • Hagihara Y.
        • Taniki N.
        • Kohno K.
        • Shibata S.
        • Miyamoto K.
        • Ishigame H.
        • Chu P.S.
        • Sujino T.
        • Suda W.
        • Hattori M.
        • Matsui M.
        • Okada T.
        • Okano H.
        • Inoue M.
        • Yada T.
        • Kitagawa Y.
        • Yoshimura A.
        • Tanida M.
        • Tsuda M.
        • Iwasaki Y.
        • Kanai T.
        The liver-brain-gut neural arc maintains the treg cell niche in the gut.
        Nature. 2020; 585: 591-596
        • Tracey K.J.
        The inflammatory reflex.
        Nature. 2002; 420: 853-859
        • van Westerloo D.J.
        • Giebelen I.A.
        • Florquin S.
        • Daalhuisen J.
        • Bruno M.J.
        • de Vos A.F.
        • Tracey K.J.
        • van der Poll T.
        The cholinergic anti-inflammatory pathway regulates the host response during septic peritonitis.
        J. Infect. Dis. 2005; 191: 2138-2148
        • Vida G.
        • Pena G.
        • Deitch E.A.
        • Ulloa L.
        alpha7-cholinergic receptor mediates vagal induction of splenic norepinephrine.
        J. Immunol. 2011; 186: 4340-4346
        • Vizi E.S.
        • Elenkov I.J.
        Nonsynaptic noradrenaline release in neuro-immune responses.
        Acta Biol. Hung. 2002; 53: 229-244
        • Wang H.
        • Yu M.
        • Ochani M.
        • Amella C.A.
        • Tanovic M.
        • Susarla S.
        • Li J.H.
        • Yang H.
        • Ulloa L.
        • Al-Abed Y.
        • Czura C.J.
        • Tracey K.J.
        Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation.
        Nature. 2003; 421: 384-388
        • Wei S.G.
        • Zhang Z.H.
        • Beltz T.G.
        • Yu Y.
        • Johnson A.K.
        • Felder R.B.
        Subfornical organ mediates sympathetic and hemodynamic responses to blood-borne proinflammatory cytokines.
        Hypertension. 2013; 62: 118-125
        • Wei S.G.
        • Yu Y.
        • Felder R.B.
        Blood-borne interleukin-1beta acts on the subfornical organ to upregulate the sympathoexcitatory milieu of the hypothalamic paraventricular nucleus.
        Am. J. Phys. Regul. Integr. Comp. Phys. 2018; 314: R447-R458