Advertisement

Dietary sodium and health: How much is too much for those with orthostatic disorders?

Published:January 20, 2022DOI:https://doi.org/10.1016/j.autneu.2022.102947

      Abstract

      High dietary salt (NaCl) increases blood pressure (BP) and can adversely impact multiple target organs including the vasculature, heart, kidneys, brain, autonomic nervous system, skin, eyes, and bone. However, patients with orthostatic disorders are told to increase their NaCl intake to help alleviate symptoms. While there is evidence to support the short-term benefits of increasing NaCl intake in these patients, there are few studies assessing the benefits and side effects of long-term high dietary NaCl. The evidence reviewed suggests that high NaCl can adversely impact multiple target organs, often independent of BP. However, few of these studies have been performed in patients with orthostatic disorders. We conclude that the recommendation to increase dietary NaCl in patients with orthostatic disorders should be done with care, keeping in mind the adverse impact on dietary NaCl in people without orthostatic disorders. Modest, rather than robust, increases in NaCl intake may be sufficient to alleviate symptoms but also minimize any long-term negative effects.

      Abbreviations:

      AHA (American Heart Association), BMD (bone mineral density), BP (blood pressure), BPV (blood pressure variability), CKD (chronic kidney disease), CV (cardiovascular), CVD (cardiovascular disease), eGFR (estimated glomerular filtration rate), ENaC (epithelial sodium channel), eNOS (endothelial nitric oxide synthase), FMD (flow-mediated dilation), fMRI (functional magnetic resonance imaging), OH (orthostatic hypotension), LV (left ventricle), mRNA (messenger ribonucleic acid), NaCl (salt), NADPH (nicotinamide adenine dinucleotide phosphate), NKCC2 (Na-K-2Cl co-transporter), NO (nitric oxide), O2− (superoxide), POTS (postural orthostatic tachycardia syndrome), PWV (pulse wave velocity), ROS (reactive oxygen species), TGF-B1 (transforming growth factor beta 1), VEGF (vascular endothelial growth factor)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Autonomic Neuroscience: Basic and Clinical
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abrahão S.B.
        • Tinucci T.
        • Santello J.L.
        • Mion D.
        Salt supresses baseline muscle sympathetic nerve activity in salt-sensitive and salt-resistant hypertensives.
        J. Hum. Hypertens. 2002; 16: 843-850https://doi.org/10.1038/sj.jhh.1001492
        • Abrams J.
        • Osborn J.W.
        A role for benzamil-sensitive proteins of the central nervous system in the pathogenesis of salt-dependent hypertension.
        Clin. Exp. Pharmacol. Physiol. 2008; 35: 687-694https://doi.org/10.1111/j.1440-1681.2008.04929.x.A
        • Allen L.A.
        • Schmidt J.R.
        • Thompson C.T.
        • Carlson B.E.
        • Beard D.A.
        • Lombard J.H.
        High salt diet impairs cerebral blood flow regulation via salt-induced angiotensin II suppression.
        Microcirculation. 2019; 26e12518https://doi.org/10.1111/micc.12518.HIGH
        • Anderson E.A.
        • Sinkey C.A.
        • Lawton W.J.
        • Mark A.L.
        Elevated sympathetic nerve activity in borderline hypertensive humans. Evidence from direct intraneural recordings.
        Hypertension. 1989; 14: 177-183https://doi.org/10.1161/01.HYP.14.2.177
        • Anderson T.J.
        • Charbonneau F.
        • Title L.M.
        • Buithieu J.
        • Rose M.S.
        • Conradson H.
        • Hildebrand K.
        • Fung M.
        • Verma S.
        • Lonn E.M.
        Microvascular function predicts cardiovascular events in primary prevention: long-term results from the firefighters and their endothelium (FATE) study.
        Circulation. 2011; 123: 163-169https://doi.org/10.1161/CIRCULATIONAHA.110.953653
        • Arnold A.C.
        • Raj S.R.
        Orthostatic hypotension: a practical approach to investigation and management.
        Can. J. Cardiol. 2017; 33: 1725-1728https://doi.org/10.1016/j.cjca.2017.05.007
        • Avolio A.P.
        • Clyde K.M.
        • Beard T.C.
        • Cooke H.M.
        • Ho K.K.
        • O’Rourke M.F.
        Improved arterial distensibility in normotensive subjects on a low salt diet.
        Arteriosclerosis. 1986; 6: 166-169https://doi.org/10.1161/01.atv.6.2.166
        • Avolio A.P.
        • Fa-quan D.
        • Wei-qiang L.I.
        • Yao-fei L.
        • Zhen-dong H.
        • Lian-fen X.
        • ORourke M.F.
        Effects of ageing on arterial distensibility in populations with high and low prevalence of hypertension: comparison between urban and rural communities in China.
        Circulation. 1985; 71: 202-210
        • Babcock M.C.
        • Robinson A.T.
        • Migdal K.U.
        • Watso J.C.
        • Wenner M.M.
        • Stocker S.D.
        • Farquhar W.B.
        Reducing dietary sodium to 1000 mg per day reduces neurovascular transduction without stimulating sympathetic outflow.
        Hypertension. 2019; 73: 587-593https://doi.org/10.1161/HYPERTENSIONAHA.118.12074
        • Bae J.H.
        • Shin D.S.
        • Lee S.C.
        • Hwang I.C.
        Sodium intake and socioeconomic status as risk factors for development of age-related cataracts: the Korea national health and nutrition examination survey.
        PLoS One. 2015; 10: 1-11https://doi.org/10.1371/journal.pone.0136218
        • Barić L.
        • Drenjančević I.
        • Matić A.
        • Stupin M.
        • Kolar L.
        • Mihaljević Z.
        • Lenasi H.
        • Šerić V.
        • Stupin A.
        Seven-day salt loading impairs microvascular endothelium-dependent vasodilation without changes in blood pressure, body composition and fluid status in healthy young humans.
        Kidney Blood Press. Res. 2019; 44: 835-847https://doi.org/10.1159/000501747
        • Benjamin E.J.
        • Muntner P.
        • Alonso A.
        • Bittencourt M.S.
        • Callaway C.W.
        • Carson A.P.
        • Chamberlain A.M.
        • Chang A.R.
        • Cheng S.
        • Das S.R.
        • Delling F.N.
        • Djousse L.
        • Elkind M.S.V.
        • Ferguson J.F.
        • Fornage M.
        • Jordan L.C.
        • Khan S.S.
        • Kissela B.M.
        • Knutson K.L.
        • Kwan T.W.
        • Lackland D.T.
        • Lewis T.T.
        • Lichtman J.H.
        • Longenecker C.T.
        • Loop M.S.
        • Lutsey P.L.
        • Martin S.S.
        • Matsushita K.
        • Moran A.E.
        • Mussolino M.E.
        • O’Flaherty M.
        • Pandey A.
        • Perak A.M.
        • Rosamond W.D.
        • Roth G.A.
        • Sampson U.K.A.
        • Satou G.M.
        • Schroeder E.B.
        • Shah S.H.
        • Spartano N.L.
        • Stokes A.
        • Tirschwell D.L.
        • Tsao C.W.
        • Turakhia M.P.
        • VanWagner L.B.
        • Wilkins J.T.
        • Wong S.S.
        • Virani S.S.
        Heart disease and stroke Statistics-2019 update: a report from the American Heart Association.
        Circulation. 2019; https://doi.org/10.1161/CIR.0000000000000659
        • Bhagat K.
        • Vallance P.
        Inflammatory cytokines impair endothelium-dependent dilatation in human veins in vivo.
        Circulation. 1997; 96: 3042-3047
        • Bibbins-Domingo K.
        • Chertow G.M.
        • Coxson P.G.
        • Moran A.
        • Lightwood J.M.
        • Pletcher M.J.
        • Goldman L.
        Projected effect of dietary salt reductions on future cardiovascular disease.
        Obstet. Gynecol. Surv. 2010; 65: 441-442https://doi.org/10.1097/OGX.0b013e3181e5f253
        • Bonyhay I.
        • Freeman R.
        Sympathetic nerve activity in response to hypotensive stress in the postural tachycardia syndrome.
        Circulation. 2004; 110: 3193-3198https://doi.org/10.1161/01.CIR.0000147280.90339.E9
        • Brunt V.E.
        • Minson C.T.
        Cutaneous thermal hyperemia: more than skin deep.
        J. Appl. Physiol. 2011; 111: 5-7https://doi.org/10.1152/japplphysiol.00544.2011
        • Burnier M.
        • Phan O.
        • Wang Q.
        High salt intake: a cause of blood pressure-independent left ventricular hypertrophy?.
        Nephrol. Dial. Transplant. 2007; 22: 2426-2429https://doi.org/10.1093/ndt/gfm321
        • Cao W.T.
        • He J.
        • Chen G.D.
        • Wang C.
        • Qiu R.
        • Chen Y.M.
        The association between urinary sodium to potassium ratio and bone density in middle-aged Chinese adults.
        Osteoporos. Int. 2017; 28: 1077-1086https://doi.org/10.1007/s00198-016-3835-9
        • Cappuccio F.P.
        Cardiovascular and other effects of salt consumption.
        Kidney Int. Suppl. 2013; 3: 312-315https://doi.org/10.1038/kisup.2013.65
        • Cappuccio F.P.
        • Capewell S.
        • Lincoln P.
        • McPherson K.
        Policy options to reduce population salt intake.
        BMJ. 2011; 343https://doi.org/10.1136/bmj.d4995
        • Carbone L.
        • Johnson K.C.
        • Huang Y.
        • Pettinger M.
        • Thomas F.
        • Cauley J.
        • Crandall C.
        • Tinker L.
        • LeBoff M.S.
        • Wactawski-Wende J.
        • Bethel M.
        • Li W.
        • Prentice R.
        Sodium intake and osteoporosis. Findings from the women’s health initiative.
        J. Clin. Endocrinol. Metab. 2016; 101: 1414-1421https://doi.org/10.1210/jc.2015-4017
        • Cavka A.
        • Jukic I.
        • Ali M.
        • Goslawski M.
        • Bian J.T.
        • Wang E.
        • Drenjancevic I.
        • Phillips S.A.
        Short-term high salt intake reduces brachial artery and microvascular function in the absence of changes in blood pressure.
        J. Hypertens. 2016; 34: 676-684https://doi.org/10.1097/HJH.0000000000000852
        • Charkoudian N.
        • Wallin B.G.
        Sympathetic neural activity to the cardiovascular system: integrator of systemic physiology and interindividual characteristics.
        Compr. Physiol. 2014; 4: 827-850https://doi.org/10.1002/cphy.c130038
        • Chirinos J.A.
        • Kips J.G.
        • Jacobs D.R.
        • Brumback L.
        • Duprez D.A.
        • Kronmal R.A.
        • Bluemke D.A.
        • Townsend R.R.
        • Vermeersch S.
        • Segers P.
        Arterial wave reflection and incident cardiovascular events and heart failure: the multiethnic study of atherosclerosis.
        Biophys. Chem. 2012; 257: 2432-2437https://doi.org/10.1016/j.immuni.2010.12.017.Two-stage
        • Chirinos J.A.
        • Segers P.
        Noninvasive evaluation of left ventricular afterload: part 1: pressure and flow measurements and basic principles of wave conduction and reflection.
        Hypertension. 2010; 56: 555-562https://doi.org/10.1161/HYPERTENSIONAHA.110.157321
        • Chirinos J.A.
        • Segers P.
        Noninvasive evaluation of left ventricular afterload: part 2: arterial pressure-flow and pressure-volume relations in humans.
        Hypertension. 2010; 56: 563-570https://doi.org/10.1161/HYPERTENSIONAHA.110.157339
        • Chopoorian A.H.
        • Wahba A.
        • Celedonio J.
        • Nwazue V.
        • Smith E.C.
        • Garland E.M.
        • Paranjape S.
        • Okamoto L.E.
        • Black B.K.
        • Biaggioni I.
        • Raj S.R.
        • Gamboa A.
        Impaired endothelial function in patients with postural tachycardia syndrome.
        Hypertension. 2021; 77: 1001-1009https://doi.org/10.1161/hypertensionaha.120.16238
        • Claydon V.E.
        • Hainsworth R.
        Salt supplementation improves orthostatic cerebral and peripheral vascular control in patients with syncope.
        Hypertension. 2004; 43: 809-813https://doi.org/10.1161/01.HYP.0000122269.05049.e7
        • Cosic A.
        • Jukic I.
        • Stupin A.
        • Mihalj M.
        • Mihaljevic Z.
        • Novak S.
        • Vukovic R.
        • Drenjancevic I.
        Attenuated flow-induced dilatation of middle cerebral arteries is related to increased vascular oxidative stress in rats on a short-term high salt diet.
        J. Physiol. 2016; 594: 4917-4931https://doi.org/10.1113/JP272297
        • Cremer A.
        • Boutouyrie P.
        • Laurent S.
        • Gosse P.
        • Tzourio C.
        Orthostatic hypotension: a marker of blood pressure variability and arterial stiffness: a cross- sectional study on an elderly population: the 3-city study.
        J. Hypertens. 2020; 38: 1103-1109
        • Crescenzi R.
        • Marton A.
        • Donahue P.M.C.
        • Mahany H.B.
        • Lants S.K.
        • Wang P.
        • Beckman J.A.
        • Donahue M.J.
        • Titze J.
        Tissue sodium content is elevated in the skin and subcutaneous adipose tissue in women with lipedema.
        Obes. (Silver Spring). 2018; 26: 310-317https://doi.org/10.1038/s41395-018-0061-4
        • Cumming R.G.
        • Mitchell P.
        • Smith W.
        Dietary sodium intake and cataract: the Blue Mountains eye study.
        Am. J. Epidemiol. 2000; 151: 624-626https://doi.org/10.1093/oxfordjournals.aje.a010251
        • D’Elia L.
        • Galletti F.
        • Fata E.La.
        • Sabino P.
        • Strazzullo P.
        Effect of dietary sodium restriction on arterial stiffness: systematic review and meta-analysis of the randomized controlled trials.
        J. Hypertens. 2018; 36: 734-743https://doi.org/10.1097/HJH.0000000000001604
        • Deliyanti D.
        • Armani R.
        • Casely D.
        • Figgett W.A.
        • Agrotis A.
        • Wilkinson-Berka J.L.
        Retinal vasculopathy is reduced by dietary salt restriction: involvement of glia, ENaCα, and the renin-angiotensin-aldosterone system.
        Arterioscler. Thromb. Vasc. Biol. 2014; 34: 2033-2041https://doi.org/10.1161/ATVBAHA.114.303792
        • Dickinson K.M.
        • Clifton P.M.
        • Keogh J.B.
        A reduction of 3g/day from a usual 9g/day salt diet improves endothelial function and decreases endothelin-1 in a randomised cross_over study in normotensive overweight and obese subjects.
        Atherosclerosis. 2014; 233: 32-38https://doi.org/10.1016/j.atherosclerosis.2013.11.078
        • Doi R.
        • Masuyama T.
        • Yamamoto K.
        • Doi Y.
        • Mano T.
        • Sakata Y.
        • Ono K.
        • Kuzuya T.
        • Hirota S.
        • Koyama T.
        • Miwa T.
        • Hori M.
        Development of different phenotypes of hypertensive heart failure: systolic versus diastolic failure in dahl salt-sensitive rats.
        J. Hypertens. 2000; 18: 111-120
        • Du Cailar G.
        • Fesler P.
        • Ribstein J.
        • Mimran A.
        Dietary sodium, aldosterone, and left ventricular mass changes during long-term inhibition of the renin-angiotensin system.
        Hypertension. 2010; 56: 865-870https://doi.org/10.1161/HYPERTENSIONAHA.110.159277
        • DuPont J.J.
        • Greaney J.L.
        • Wenner M.M.
        • Lennon-Edwards S.L.
        • Sanders P.W.
        • Farquhar W.B.
        • Edwards D.G.
        High dietary sodium intake impairs endothelium-dependent dilation in healthy salt-resistant humans.
        J. Hypertens. 2013; 31: 530-536https://doi.org/10.1097/HJH.0b013e32835c6ca8
        • Durand M.J.
        • Lombard J.H.
        Low-dose angiotensin II infusion restores vascular function in cerebral arteries of high salt-fed rats by increasing copper/zinc superoxide dimutase expression.
        Am. J. Hypertens. 2013; 26: 739-747https://doi.org/10.1093/ajh/hpt015
        • Eigenbrodt M.L.
        • Rose K.M.
        • Couper D.J.
        • Arnett D.K.
        • Smith R.
        • Jones D.
        Orthostatic hypotension as a risk factor for stroke: the atherosclerosis risk in communities (ARIC) study, 1987–1996.
        Stroke. 2000; 31: 2307-2313https://doi.org/10.1161/01.STR.31.10.2307
        • Eisenach J.H.
        • Gullixson L.R.
        • Kost S.L.
        • Joyner M.J.
        • Turner S.T.
        • Nicholson W.T.
        Sex differences in salt sensitivity to nitric oxide dependent vasodilation in healthy young adults.
        J. Appl. Physiol. 2012; 112: 1049-1053https://doi.org/10.1152/japplphysiol.01197.2011
        • El-Sayed H.
        • Hainsworth R.
        Salt supplement increases plasma volume and orthostatic tolerance in patients with unexplained syncope.
        Heart. 1996; 75: 134-140https://doi.org/10.1136/hrt.75.2.134
        • Farquhar W.B.
        • Edwards D.G.
        • Jurkovitz C.T.
        • Weintraub W.S.
        Dietary sodium and health: more than just blood pressure.
        J. Am. Coll. Cardiol. 2015; 65: 1042-1050https://doi.org/10.1016/j.jacc.2014.12.039
        • Farquhar W.B.
        • Wenner M.M.
        • Delaney E.P.
        • Prettyman A.V.
        • Stillabower M.E.
        Sympathetic neural responses to increased osmolality in humans.
        Am. J. Physiol. - Hear. Circ. Physiol. 2006; 291: 2181-2186https://doi.org/10.1152/ajpheart.00191.2006
        • Fatahi S.
        • Namazi N.
        • Larijani B.
        • Azadbakht L.
        The Association of Dietary and Urinary Sodium with Bone Mineral Density and risk of osteoporosis: a systematic review and meta-analysis.
        J. Am. Coll. Nutr. 2018; 37: 522-532https://doi.org/10.1080/07315724.2018.1431161
        • Ferrara A.L.
        • De Simone G.
        • Pasanisi F.
        • Mancini Marcello
        • Mancini Mario
        Left ventricular mass reduction during salt depletion in arterial hypertension.
        Hypertension. 1984; 6: 755-759https://doi.org/10.1161/01.hyp.6.5.755
        • Figueroa J.J.
        • Basford J.R.
        • Low P.A.
        Preventing and treating orthostatic hypotension: as easy as A, B, C.
        Cleve. Clin. J. Med. 2010; 77: 298-306https://doi.org/10.3949/ccjm.77a.09118
        • Fisher J.P.
        • Young C.N.
        • Fadel P.J.
        Central sympathetic overactivity: maladies and mechanisms.
        Auton. Neurosci. Basic Clin. 2009; 148: 5-15https://doi.org/10.1016/j.autneu.2009.02.003
        • Fu Q.
        • Levine B.D.
        Exercise and non-pharmacological treatment of POTS.
        Auton. Neurosci. Basic Clin. 2018; 215: 20-27https://doi.org/10.1016/j.autneu.2018.07.001
        • García-Ortiz L.
        • Recio-Rodríguez J.I.
        • Rodríguez-Sánchez E.
        • Patino-Alonso M.C.
        • Agudo-Conde C.
        • Rodríguez-Martín C.
        • Castaño-Sánchez C.
        • Runkle I.
        • Gómez-Marcos M.A.
        Sodium and potassium intake present a J-shaped relationship with arterial stiffness and carotid intima-media thickness.
        Atherosclerosis. 2012; 225: 497-503https://doi.org/10.1016/j.atherosclerosis.2012.09.038
        • Garland E.M.
        • Gamboa A.
        • Nwazue V.C.
        • Celedonio J.E.
        • Paranjape S.Y.
        • Black B.K.
        • Okamoto L.E.
        • Shibao C.A.
        • Biaggioni I.
        • Robertson D.
        • Diedrich A.
        • Dupont W.D.
        • Raj S.R.
        Effect of high dietary sodium intake in patients with postural tachycardia syndrome.
        J. Am. Coll. Cardiol. 2021; 77: 2174-2184https://doi.org/10.1016/j.jacc.2021.03.005
        • Garofalo C.
        • Borrelli S.
        • Provenzano M.
        • De Stefano T.
        • Vita C.
        • Chiodini P.
        • Minutolo R.
        • De Nicola L.
        • Conte G.
        Dietary salt restriction in chronic kidney disease: a meta-analysis of randomized clinical trials.
        Nutrients. 2018; 10: 1-15https://doi.org/10.3390/nu10060732
        • Gokce N.
        • Keaney J.F.
        • Hunter L.M.
        • Watkins M.T.
        • Menzoian J.O.
        • Vita J.A.
        Risk stratification for postoperative cardiovascular events via noninvasive assessment of endothelial function: a prospective study.
        Circulation. 2002; 105: 1567-1572https://doi.org/10.1161/01.CIR.0000012543.55874.47
        • Gori T.
        • Dragoni S.
        • Lisi M.
        • Di Stolfo G.
        • Sonnati S.
        • Fineschi M.
        • Parker J.D.
        Conduit artery constriction mediated by low flow. A novel noninvasive method for the assessment of vascular function.
        J. Am. Coll. Cardiol. 2008; 51: 1953-1958https://doi.org/10.1016/j.jacc.2008.01.049
        • Gori T.
        • von Henning U.
        • Muxel S.
        • Schaefer S.
        • Fasola F.
        • Vosseler M.
        • Schnorbus B.
        • Binder H.
        • Parker J.D.
        • Munzel T.
        Both flow-mediated dilation and constriction are associated with changes in blood flow and shear stress: two complementary perspectives on endothelial function.
        Clin. Hemorheol. Microcirc. 2016; 64: 255-266
        • Goulding A.
        Fasting urinary sodium/creatinine in relation to calcium/creatinine and hydroxyproline/creatinine in a general population of women.
        N. Z. Med. J. 1981; 93: 294-297
        • Goulding A.
        • Gold E.
        Effects of dietary sodium chloride loading on parathyroid function, 1,25-dihydroxyvitamin d, calcium balance, and bone metabolism in female rats during chronic prednisolone administration.
        Endocrinology. 1986; 119: 2148-2154https://doi.org/10.1210/endo-119-5-2148
        • Grassi G.
        • Cattaneo B.M.
        • Seravalle G.
        • Lanfrachni A.
        • Bolla G.
        • Mancia G.
        Baroreflex impairment by low sodium diet in mild or moderate essential hypertension.
        Hypertension. 1997; 29: 802-807
        • Greaney J.L.
        • DuPont J.J.
        • Lennon-Edwards S.L.
        • Sanders P.W.
        • Edwards D.G.
        • Farquhar W.B.
        Dietary sodium loading impairs microvascular function independent of blood pressure in humans: role of oxidative stress.
        J. Physiol. 2012; 590: 5519-5528https://doi.org/10.1113/jphysiol.2012.236992
        • Green D.J.
        • Dawson E.A.
        • Groenewoud H.M.M.
        • Jones H.
        • Thijssen D.H.J.
        Is flow-mediated dilation nitric oxide mediated?: a meta-analysis.
        Hypertension. 2014; 63: 376-382https://doi.org/10.1161/HYPERTENSIONAHA.113.02044
        • Grillo A.
        • Salvi L.
        • Coruzzi P.
        • Salvi P.
        • Parati G.
        Sodium intake and hypertension.
        Nutrients. 2019; 11: 1-16https://doi.org/10.3390/nu11091970
        • Gu J.W.
        • Anand V.
        • Shek E.W.
        • Moore M.C.
        • Brady A.L.
        • Kelly W.C.
        • Adair T.H.
        Sodium induces hypertrophy of cultured myocardial myoblasts and vascular smooth muscle cells.
        Hypertension. 1998; 31: 1083-1087https://doi.org/10.1161/01.HYP.31.5.1083
        • Guers J.J.
        • Kasecky-Lardner L.
        • Farquhar W.B.
        • Edwards D.G.
        • Lennon S.L.
        Voluntary wheel running prevents salt-induced endothelial dysfunction: role of oxidative stress.
        J. Appl. Physiol. 2019; 126: 502-510https://doi.org/10.1152/japplphysiol.00421.2018
        • Haring B.
        • Wang W.
        • Lee E.T.
        • Jhamnani S.
        • Howard B.V.
        • Devereux R.B.
        Effect of dietary sodium and potassium intake on left ventricular diastolic function and mass in adults ≤40 years (from the strong heart Study).
        Am. J. Cardiol. 2015; 115: 1244-1248https://doi.org/10.1016/j.amjcard.2015.02.008
        • Hashimoto J.
        • Nichols W.W.
        • O’Rourke M.F.
        • Imai Y.
        Association between wasted pressure effort and left ventricular hypertrophy in hypertension: influence of arterial wave reflection.
        Am. J. Hypertens. 2008; 21: 329-333https://doi.org/10.1038/ajh.2007.49
        • He F.J.
        • Li J.
        • MacGregor G.A.
        Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials.
        BMJ. 2013; 346https://doi.org/10.1136/bmj.f1325
        • He J.
        • Ogden L.
        • Bazzano L.A.
        • Vupputuri S.
        • Loria C.
        • Whelton P.K.
        Dietary sodium intake and incidence of congestive heart failure in overweight U.S. men and women.
        Am. J. Hypertens. 2002; 162: 1619-1624https://doi.org/10.1016/s0895-7061(00)00316-2
        • Henderson K.K.
        • Byron K.L.
        Vasopressin-induced vasoconstriction: two concentration-dependent signaling pathways.
        J. Appl. Physiol. 2007; 102: 1402-1409https://doi.org/10.1152/japplphysiol.00825.2006
        • Holowatz L.A.
        • Thompson-Torgerson C.S.
        • Kenney W.L.
        The human cutaneous circulation as a model of generalized microvascular function.
        J. Appl. Physiol. 2008; 105: 370-372https://doi.org/10.1152/japplphysiol.00165.2008
        • Hosohata K.
        Biomarkers for chronic kidney disease associated with high salt intake.
        Int. J. Mol. Sci. 2017; 18https://doi.org/10.3390/ijms18102080
        • Hosohata K.
        • Yoshioka D.
        • Tanaka A.
        • Ando H.
        • Fujimura A.
        Early urinary biomarkers for renal tubular damage in spontaneously hypertensive rats on a high salt intake.
        Hypertens. Res. 2016; 39: 19-26https://doi.org/10.1038/hr.2015.103
        • Hucke S.
        • Eschborn M.
        • Liebmann M.
        • Herold M.
        • Freise N.
        • Engbers A.
        • Ehling P.
        • Meuth S.G.
        • Roth J.
        • Kuhlmann T.
        • Wiendl H.
        • Klotz L.
        Sodium chloride promotes pro-inflammatory macrophage polarization thereby aggravating CNS autoimmunity.
        J. Autoimmun. 2016; 67: 90-101https://doi.org/10.1016/j.jaut.2015.11.001
        • Inoko M.
        • Kihara Y.
        • Morii I.
        • Fujiwara H.
        • Sasayama S.
        Transition from compensatory hypertrophy to dilated failing left ventricles in dahl salt-sensitive rats.
        Am. J. Physiol. - Hear. Circ. Physiol. 1994; 267: H2471-H2482
        • Jablonski K.L.
        • Racine M.L.
        • Geolfos C.J.
        • Gates P.E.
        • Chonchol M.
        • McQueen M.B.
        • Seals D.R.
        Dietary sodium restriction reverses vascular endothelial dysfunction in middle-aged/older adults with moderately elevated systolic blood pressure.
        J. Am. Coll. Cardiol. 2013; 61: 335-343https://doi.org/10.1016/j.jacc.2012.09.010
        • Jin Y.
        • Kuznetsova T.
        • Maillard M.
        • Richart T.
        • Thijs L.
        • Bochud M.
        • Herregods M.C.
        • Burnier M.
        • Fagard R.
        • Staessen J.A.
        Independent relations of left ventricular structure with the 24-hour urinary excretion of sodium and aldosterone.
        Hypertension. 2009; 54: 489-495https://doi.org/10.1161/HYPERTENSIONAHA.109.130492
        • Jones C.D.
        • Loehr L.
        • Franceschini N.
        • Rosamond W.D.
        • Chang P.P.
        • Shahar E.
        • Couper D.J.
        • Rose K.M.
        Orthostatic hypotension as a risk factor for incident heart failure: the atherosclerosis risk in communities study.
        Hypertension. 2012; 59: 913-918https://doi.org/10.1161/HYPERTENSIONAHA.111.188151
        • Jula A.M.
        • Karanko H.M.
        Effects on left ventricular hypertrophy of long-term nonpharmacological treatment with sodium restriction in mild-to-moderate essential hypertension.
        Circulation. 1994; 89: 1023-1031https://doi.org/10.1161/01.CIR.89.3.1023
        • Kamiya A.
        • Michikami D.
        • Fu Q.
        • Iwase S.
        • Hayano J.
        • Kawada T.
        • Mano T.
        • Sunagawa K.
        Pathophysiology of orthostatic hypotension after bed rest: paradoxical sympathetic withdrawal.
        Am. J. Physiol. - Hear. Circ. Physiol. 2003; 285: 5-7https://doi.org/10.1152/ajpheart.00965.2002
        • Kim S.W.
        • Jeon J.H.
        • Choi Y.K.
        • Lee W.K.
        • Hwang I.R.
        • Kim J.G.
        • Lee I.K.
        • Park K.G.
        Association of urinary sodium/creatinine ratio with bone mineral density in postmenopausal women: KNHANES 2008–2011.
        Endocrine. 2015; 49: 791-799https://doi.org/10.1007/s12020-015-0532-y
        • Kinsman B.J.
        • Simmonds S.S.
        • Browning K.N.
        • Stocker S.D.
        The organum vasculosum of the lamina terminalis detects NaCl to elevate sympathetic nerve activity and blood pressure.
        Hypertension. 2017; 69: 163-170https://doi.org/10.1016/j.physbeh.2017.03.040
        • Kitiyakara C.
        • Chabrashvili T.
        • Chen Y.
        • Blau J.
        • Karber A.
        • Aslam S.
        • Welch W.J.
        • Wilcox C.S.
        Salt intake, oxidative stress, and renal expression of NADPH oxidase and superoxide dismutase.
        J. Am. Soc. Nephrol. 2003; 14: 2775-2782https://doi.org/10.1097/01.ASN.0000092145.90389.65
        • Kleinewietfeld M.
        • Manzel A.
        • Titze J.
        • Kvakan H.
        • Yosef N.
        • Linker R.A.
        • Muller D.N.
        • Hafler D.A.
        Sodium chloride drives autoimmune disease by the induction of pathogenic TH 17 cells.
        Nature. 2013; 496: 518-522https://doi.org/10.1038/nature11868
        • Klotz S.
        • Hay I.
        • Zhang G.
        • Maurer M.
        • Wang J.
        • Burkhoff D.
        Development of heart failure in chronic hypertensive dahl rats: focus on heart failure with preserved ejection fraction.
        Hypertension. 2006; 47: 901-911https://doi.org/10.1161/01.HYP.0000215579.81408.8e
        • Konopacka A.
        • Qiu J.
        • Yao S.T.
        • Greenwood M.P.
        • Greenwood M.
        • Lancaster T.
        • Inoue W.
        • De Mecawi A.S.
        • Vechiato F.M.V.
        • De Lima J.B.M.
        • Coletti R.
        • Hoe S.Z.
        • Martin A.
        • Lee J.
        • Joseph M.
        • Hindmarch C.
        • Paton J.
        • Antunes-Rodrigues J.
        • Bains J.
        • Murphy D.
        Osmoregulation requires brain expression of the renal na-K-2Cl cotransporter NKCC2.
        J. Neurosci. 2015; 35: 5144-5155https://doi.org/10.1523/JNEUROSCI.4121-14.2015
        • Kopp C.
        • Linz P.
        • Dahlmann A.
        • Hammon M.
        • Jantsch J.
        • Müller D.N.
        • Schmieder R.E.
        • Cavallaro A.
        • Eckardt K.U.
        • Uder M.
        • Luft F.C.
        • Titze J.
        23Na magnetic resonance imaging-determined tissue sodium in healthy subjects and hypertensive patients.
        Hypertension. 2013; 61: 635-640https://doi.org/10.1161/HYPERTENSIONAHA.111.00566
        • Kopp C.
        • Linz P.
        • Maier C.
        • Wabel P.
        • Hammon M.
        • Nagel A.M.
        • Rosenhauer D.
        • Horn S.
        • Uder M.
        • Luft F.C.
        • Titze J.
        • Dahlmann A.
        Elevated tissue sodium deposition in patients with type 2 diabetes on hemodialysis detected by 23Na magnetic resonance imaging.
        Kidney Int. 2018; 93: 1191-1197
        • Kovacs I.
        • Toth J.
        • Tarjan J.
        • Koller A.
        Correlation of flow mediated dilation with inflammatory markers in patients with impaired cardiac function. Beneficial effects of inhibition of ACE.
        Eur. J. Heart Fail. 2006; https://doi.org/10.1016/j.ejheart.2005.10.011
        • Langenfeld M.R.W.
        • Schobel H.
        • Veelken R.
        • Weihprecht H.
        • Schmieder R.E.
        Impact of dietary sodium intake on left ventricular diastolic filling in early essential hypertension.
        Eur. Heart J. 1998; 19: 951-958https://doi.org/10.1053/euhj.1997.0854
        • Lanier J.B.
        • Mote M.B.
        • Clay E.C.
        Evaluation and management of orthostatic hypotension.
        Am. Fam. Physician. 2011; 84: 527-536
        • Laurent S.
        • Cockcroft J.
        • Van Bortel L.
        • Boutouyrie P.
        • Giannattasio C.
        • Hayoz D.
        • Pannier B.
        • Vlachopoulos C.
        • Wilkinson I.
        • Struijker-Boudier H.
        Expert consensus document on arterial stiffness: methodological issues and clinical applications.
        Eur. Heart J. 2006; 27: 2588-2605https://doi.org/10.1093/eurheartj/ehl254
        • Lennon-Edwards S.
        • Ramick M.G.
        • Matthews E.L.
        • Brian M.S.
        • Farquhar W.B.
        • Edwards D.G.
        Salt loading has a more deleterious effect on flow-mediated dilation in salt-resistant men than women.
        Nutr. Metab. Cardiovasc. Dis. 2014; 24: 990-995https://doi.org/10.1016/j.numecd.2014.05.004
        • Li Q.
        • Fang W.
        • Hu F.
        • Zhou X.
        • Cheng Y.
        • Jiang C.
        A high-salt diet aggravates retinal ischaemia/reperfusion injury.
        Exp. Eye Res. 2019; 188107784https://doi.org/10.1016/j.exer.2019.107784
        • Li X.Y.
        • Cai X.L.
        • Bian P.Da.
        • Hu L.R.
        High salt intake and stroke: meta-analysis of the epidemiologic evidence.
        CNS Neurosci. Ther. 2012; 18: 691-701https://doi.org/10.1111/j.1755-5949.2012.00355.x
        • Liao Y.
        • Chen S.
        • Liu X.
        • Zhang Q.
        • Ai Y.
        • Wang Y.
        • Jin H.
        • Tang C.
        • Du J.
        Flow-mediated vasodilation and endothelium function in children with postural orthostatic tachycardia syndrome.
        Am. J. Cardiol. 2010; 106: 378-382https://doi.org/10.1016/j.amjcard.2010.03.034
        • Lin J.
        • Hu F.B.
        • Curhan G.C.
        Associations of diet with albuminuria and kidney function decline.
        Clin. J. Am. Soc. Nephrol. 2010; 5: 836-843https://doi.org/10.2215/CJN.08001109
        • Lin P.H.
        • Ginty F.
        • Appel L.J.
        • Aickin M.
        • Bohannon A.
        • Garnero P.
        • Barclay D.
        • Svetkey L.P.
        The DASH diet and sodium reduction improve markers of bone turnover and calcium metabolism in adults.
        J. Nutr. 2003; 133: 3130-3136https://doi.org/10.1093/jn/133.10.3130
        • Lloyd-Jones D.M.
        • Hong Y.
        • Labarthe D.
        • Mozaffarian D.
        • Appel L.J.
        • Van Horn L.
        • Greenlund K.
        • Daniels S.
        • Nichol G.
        • Tomaselli G.F.
        • Arnett D.K.
        • Fonarow G.C.
        • Ho P.M.
        • Lauer M.S.
        • Masoudi F.A.
        • Robertson R.M.
        • Roger V.
        • Schwamm L.H.
        • Sorlie P.
        • Yancy C.W.
        • Rosamond W.D.
        Defining and setting national goals for cardiovascular health promotion and disease reduction: the american heart association’s strategic impact goal through 2020 and beyond.
        Circulation. 2010; 121: 586-613https://doi.org/10.1161/CIRCULATIONAHA.109.192703
        • Lombard J.H.
        • Sylvester F.A.
        • Phillips S.A.
        • Frisbee J.C.
        High-salt diet impairs vascular relaxation mechanisms in rat middle cerebral arteries.
        Am. J. Physiol. - Hear. Circ. Physiol. 2003; 284: 1124-1133https://doi.org/10.1152/ajpheart.00835.2002
        • Loughlin E.A.
        • Judge C.S.
        • Gorey S.E.
        • Costello M.M.
        • Murphy R.P.
        • Waters R.F.
        • Hughes D.S.
        • Kenny R.A.
        • O’Donnell M.J.
        • Canavan M.D.
        Increased salt intake for orthostatic intolerance syndromes: a systematic review and meta-analysis.
        Am. J. Med. 2020; 133: 1471-1478.e4https://doi.org/10.1016/j.amjmed.2020.05.028
        • Low P.A.
        • Singer W.
        Management of neurogenic orthostatic hypotension: an update.
        Lancet Neurol. 2008; 5: 451-458https://doi.org/10.1016/j.jamda.2013.10.014
        • MacHnik A.
        • Dahlmann A.
        • Kopp C.
        • Goss J.
        • Wagner H.
        • Van Rooijen N.
        • Eckardt K.U.
        • Müller D.N.
        • Park J.K.
        • Luft F.C.
        • Kerjaschki D.
        • Titze J.
        Mononuclear phagocyte system depletion blocks interstitial tonicity-responsive enhancer binding protein/vascular endothelial growth factor c expression and induces salt-sensitive hypertension in rats.
        Hypertension. 2010; 55: 755-761https://doi.org/10.1161/HYPERTENSIONAHA.109.143339
        • MacHnik A.
        • Neuhofer W.
        • Jantsch J.
        • Dahlmann A.
        • Tammela T.
        • MacHura K.
        • Park J.K.
        • Beck F.X.
        • Müller D.N.
        • Derer W.
        • Goss J.
        • Ziomber A.
        • Dietsch P.
        • Wagner H.
        • Van Rooijen N.
        • Kurtz A.
        • Hilgers K.F.
        • Alitalo K.
        • Eckardt K.U.
        • Luft F.C.
        • Kerjaschki D.
        • Titze J.
        Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism.
        Nat. Med. 2009; 15: 545-552https://doi.org/10.1038/nm.1960
        • Magnusson M.
        • Holm H.
        • Bachus E.
        • Nilsson P.
        • Leosdottir M.
        • Melander O.
        • Jujic A.
        • Fedorowski A.
        Orthostatic hypotension and cardiac changes after long-term follow-up.
        Am. J. Hypertens. 2016; 29: 847-852https://doi.org/10.1093/ajh/hpv187
        • Mancia G.
        • Parati G.
        The role of blood pressure variability in end-organ damage.
        J. Hypertens. 2003; 21: S17-S23
        • Mano T.
        • Iwase S.
        Sympathetic nerve activity in hypotension and orthostatic intolerance.
        Acta Physiol. Scand. 2003; 177: 359-365https://doi.org/10.1046/j.1365-201X.2003.01081.x
        • Markus H.
        • Cullinane M.
        Severely impaired cerebrovascular reactivity predicts stroke and TIA risk in patients with carotid artery stenosis and occlusion.
        Brain. 2001; 124: 457-467https://doi.org/10.1093/brain/124.3.457
        • Martin J.V.
        • Liberati D.M.
        • Diebel L.N.
        Excess sodium is deleterious on endothelial and glycocalyx barrier function: a microfluidic study.
        J. Trauma Acute Care Surg. 2018; 85: 128-134https://doi.org/10.1097/TA.0000000000001892
        • Matic A.
        • Jukic I.
        • Stupin A.
        • Baric L.
        • Mihaljevic Z.
        • Unfirer S.
        • Tartaro Bujak I.
        • Mihaljevic B.
        • Lombard J.H.
        • Drenjancevic I.
        High salt intake shifts the mechanisms of flow-induced dilation in the middle cerebral arteries of Sprague-dawley rats.
        Am. J. Physiol. Heart Circ. Physiol. 2018; 315: H718-H730https://doi.org/10.1152/ajpheart.00097.2018
        • Matthews E.L.
        • Brian M.S.
        • Ramick M.G.
        • Lennon-Edwards S.
        • Edwards D.G.
        • Farquhar W.B.
        High dietary sodium reduces brachial artery flow-mediated dilation in humans with salt-sensitive and salt-resistant blood pressure.
        J. Appl. Physiol. 2015; 118: 1510-1515https://doi.org/10.1152/japplphysiol.00023.2015
        • Migdal K.U.
        • Babcock M.C.
        • Robinson A.T.
        • Watso J.C.
        • Wenner M.M.
        • Stocker S.D.
        • Farquhar W.B.
        The impact of high dietary sodium consumption on blood pressure variability in healthy, young adults.
        Am. J. Hypertens. 2020; 33: 422-429https://doi.org/10.1093/ajh/hpaa014
        • Migdal K.U.
        • Robinson A.T.
        • Watso J.C.
        • Babcock M.C.
        • Lennon S.L.
        • Martens C.R.
        • Serrador J.M.
        • Farquhar W.B.
        A high salt meal does not impair cerebrovascular reactivity in healthy young adults.
        Physiol. Rep. 2020; 8: 1-13https://doi.org/10.14814/phy2.14585
        • Mirsamadi M.
        • Nourmohammadi I.
        • Imamian M.
        Comparative study of serum na + and K + levels in senile cataract patients and normal individuals.
        Int. J. Med. Sci. 2012; 1: 165-169https://doi.org/10.7150/ijms.1.165
        • Möckl L.
        The emerging role of the mammalian glycocalyx in functional membrane organization and immune system regulation.
        Front. Cell Dev. Biol. 2020; 8: 1-14https://doi.org/10.3389/fcell.2020.00253
        • Musiari L.L.
        • Ceriati R.
        • Taliani U.
        • Montesi M.C.
        • Novarini A.
        Early abnormalities in left ventricular diastolic function of sodium-sensitive hypertensive patients.
        J. Hum. Hypertens. 1999; 13: 711-716https://doi.org/10.1038/sj.jhh.1000893
        • Muth B.J.
        • Brian M.S.
        • Chirinos J.A.
        • Lennon S.L.
        • Farquhar W.B.
        • Edwards D.G.
        Central systolic blood pressure and aortic stiffness response to dietary sodium in young and middle-aged adults.
        J. Am. Soc. Hypertens. 2017; 11: 627-634
        • Nishimura M.
        • Ohtsuka K.
        • Nanbu A.
        • Takahashi H.
        • Yoshimura M.
        Benzamil blockade of brain Na+ channels averts Na+-induced hypertension in rats.
        Am. J. Physiol. - Regul. Integr. Comp. Physiol. 1998; 274: 635-644https://doi.org/10.1152/ajpregu.1998.274.3.r635
        • Noda M.
        • Hiyama T.Y.
        Sodium sensing in the brain.
        Pflugers Arch. Eur. J. Physiol. 2015; 467: 465-474https://doi.org/10.1007/s00424-014-1662-4
        • Nomura K.
        • Hiyama T.Y.
        • Sakuta H.
        • Matsuda T.
        • Lin C.H.
        • Kobayashi Kenta
        • Kobayashi Kazuto
        • Kuwaki T.
        • Takahashi K.
        • Matsui S.
        • Noda M.
        [Na + ] increases in body fluids sensed by central na x induce sympathetically mediated blood pressure elevations via H + -dependent activation of ASIC1a.
        Neuron. 2019; 101: 60-75.e6https://doi.org/10.1016/j.neuron.2018.11.017
        • O’Donnell M.J.
        • Yusuf S.
        • Mente A.
        • Gao P.
        • Mann J.F.
        • Teo K.
        • McQueen M.
        • Sleight P.
        • Sharma A.M.
        • Dans A.
        • Probstfield J.
        • Schmieder R.E.
        Urinary sodium and potassium excretion and risk of cardiovascular events.
        JAMA. 2011; 306: 2229-2238
        • Oberleithner H.
        • Peters W.
        • Kusche-Vihrog K.
        • Korte S.
        • Schillers H.
        • Kliche K.
        • Oberleithner K.
        Salt overload damages the glycocalyx sodium barrier of vascular endothelium.
        Pflugers Arch. Eur. J. Physiol. 2011; 462: 519-528https://doi.org/10.1007/s00424-011-0999-1
        • Ocon A.J.
        • Medow M.S.
        • Taneja I.
        • Clarke D.
        • Stewart J.M.
        Decreased upright cerebral blood flow and cerebral autoregulation in normocapnic postural tachycardia syndrome.
        Am. J. Physiol. - Hear. Circ. Physiol. 2009; 297: 664-673https://doi.org/10.1152/ajpheart.00138.2009
        • Ohta Y.
        • Tsuchihashi T.
        • Kiyohara K.
        • Oniki H.
        High salt intake promotes a decline in renal function in hypertensive patients: a 10-year observational study.
        Hypertens. Res. 2013; 36: 172-176https://doi.org/10.1038/hr.2012.155
        • Ozkayar N.
        • Dede F.
        • Ates I.
        • Akyel F.
        • Yildirim T.
        • Altun B.
        The relationship between dietary salt intake and ambulatory blood pressure variability in non-diabetic hypertensive patients.
        Nefrologia. 2016; 36: 694-700https://doi.org/10.1016/j.nefro.2015.12.004
        • Palma J.A.
        • Kaufmann H.
        Management of orthostatic hypotension.
        in: CONTINUUM Lifelong Learning in Neurology. 2020https://doi.org/10.1212/CON.0000000000000816
        • Parati G.
        • Ochoa J.E.
        • Lombardi C.
        • Bilo G.
        Assessment and management of blood-pressure variability.
        Nat. Rev. Cardiol. 2013; 10: 143-155
        • Parati G.
        • Pomidossi G.
        • Albini F.
        • Malaspina D.
        • Mancia G.
        Relationship of 24-hour blood pressure mean and variability to severity of target organ damage in hypertension.
        J. Hypertens. 1987; 5: 93-98
        • Parfitt A.M.
        The actions of parathyroid hormone on bone: relation to bone remodeling and turnover, calcium homeostasis, and metabolic bone disease. Part I of IV parts: mechanisms of calcium transfer between blood and bone and their cellular basis: morphological a.
        Metab. Clin. Exp. 1976; 25: 809-844
        • Park Y.
        • Kwon S.J.
        • Ha Y.C.
        Association between urinary sodium excretion and bone health in male and female adults.
        Ann. Nutr. Metab. 2016; 68: 189-196
        • Patik J.C.
        • Lennon S.L.
        • Farquhar W.B.
        • Edwards D.G.
        Endothelial function and potential countermeasures.
        Nutrients. 2021; 13: 270
        • Perry I.J.
        • Beevers D.G.
        Salt intake and stroke: a possible direct effect.
        J. Hum. Hypertens. 1992; 6: 23-25
        • Perticone F.
        • Ceravolo R.
        • Pujia A.
        • Ventura G.
        • Iacopino S.
        • Scozzafava A.
        • Ferraro A.
        • Chello M.
        • Mastroroberto P.
        • Verdecchia P.
        • Schillaci G.
        Prognostic significance of endothelial dysfunction in hypertensive patients.
        Circulation. 2001; 104: 191-196https://doi.org/10.1161/01.CIR.104.2.191
        • Phipps M.S.
        • Schmid A.A.
        • Kapoor J.R.
        • Peixoto A.J.
        • Williams L.S.
        • Bravata D.M.
        Orthostatic hypotension among outpatients with ischemic stroke.
        J. Neurol. Sci. 2012; 314: 62-65https://doi.org/10.1016/j.jns.2011.10.031
        • Qin Y.
        • Fan J.
        • Ye X.
        • Xu G.
        • Liu W.
        • Da C.
        High salt loading alters the expression and localization of glial aquaporins in rat retina.
        Exp. Eye Res. 2009; 89: 88-94https://doi.org/10.1016/j.exer.2009.02.017
        • Quader Z.S.
        • Zhao L.
        • Gillespie C.
        • Cogswell M.E.
        • Terry A.L.
        • Moshfegh A.
        • Rhodes D.
        Sodium intake among persons aged ≥2 years — United States, 2013–2014.
        MMWR Morb Mortal Wkly. 2017; 66 (324–238)https://doi.org/10.15585/mmwr.mm6612a3
        • Raj S.R.
        • Biaggioni I.
        • Yamhure P.C.
        • Black B.K.
        • Paranjape S.Y.
        • Byrne D.W.
        • Robertson D.
        Renin-aldosterone paradox and perturbed blood volume regulation underlying postural tachycardia syndrome.
        Circulation. 2005; 111: 1574-1582https://doi.org/10.1161/01.CIR.0000160356.97313.5D
        • Raj S.R.
        • Guzman J.C.
        • Harvey P.
        • Richer L.
        • Schondorf R.
        • Seifer C.
        • Thibodeau-Jarry N.
        • Sheldon R.S.
        Canadian cardiovascular society position statement on postural orthostatic tachycardia syndrome (POTS) and related disorders of chronic orthostatic intolerance.
        Can. J. Cardiol. 2020; 36: 357-372https://doi.org/10.1016/j.cjca.2019.12.024
        • Ramick M.G.
        • Brian M.S.
        • Matthews E.L.
        • Patik J.C.
        • Seals D.R.
        • Lennon S.L.
        • Farquhar W.B.
        • Edwards D.G.
        Apocynin and tempol ameliorate dietary sodium-induced declines in cutaneous microvascular function in salt-resistant humans.
        Am. J. Physiol. - Hear. Circ. Physiol. 2019; 317: H97-H103https://doi.org/10.1152/ajpheart.00786.2018
        • Robinson A.T.
        • Edwards D.G.
        • Farquhar W.B.
        The influence of dietary salt beyond blood pressure.
        Curr. Hypertens. Rep. 2019; 21https://doi.org/10.1007/s11906-019-0948-5
        • Rodriguez-Sargent C.
        • Berrios G.
        • Irrizarry J.E.
        • Estape E.S.
        • Cangiano J.L.
        • Martinez-Maldonado M.
        Prevention and reversal of cataracts in genetically hypertensive rats through sodium restriction.
        Investig. Ophthalmol. Vis. Sci. 1989; 30: 2356-2360
        • Rodriguez C.J.
        • Bibbins-Domingo K.
        • Jin Z.
        • Daviglus M.L.
        • Goff D.C.
        • Jacobs D.R.
        Association of sodium and potassium intake with left ventricular mass: coronary artery risk development in young adults.
        Hypertension. 2011; 58: 410-416https://doi.org/10.1161/HYPERTENSIONAHA.110.168054
        • Rouabhi M.
        • Durieux J.
        • Al-Kindi S.
        • Cohen J.B.
        • Townsend R.R.
        • Rahman M.
        Orthostatic hypertension and hypotension and outcomes in CKD: the CRIC (Chronic renal insufficiency Cohort) study.
        Kidney Med. 2021; 3: 206-215.e1https://doi.org/10.1016/j.xkme.2020.10.012
        • Sarafidis P.A.
        • Ruilope L.M.
        • Loutradis C.
        • Gorostidi M.
        • de la Sierra A.
        • de le Cruz J.J.
        • Vinyoles E.
        • Divison-Garrote J.A.
        • Segura J.
        • Banegas J.R.
        Blood pressure variability increases with advancing chronic kidney disease stage: a cross- sectional analysis of 16?546 hypertensive patients.
        J. Hypertens. 2018; 36: 1076-1085
        • Schierke F.
        • Wyrwoll M.J.
        • Wisdorf M.
        • Niedzielski L.
        • Maase M.
        • Ruck T.
        • Meuth S.G.
        • Kusche-Vihrog K.
        Nanomechanics of the endothelial glycocalyx contribute to Na+ - induced vascular inflammation.
        Sci. Rep. 2017; 7: 1-11https://doi.org/10.1038/srep46476
        • Schneider M.P.
        • Raff U.
        • Kopp C.
        • Scheppach J.B.
        • Toncar S.
        • Wanner C.
        • Schlieper G.
        • Saritas T.
        • Floege J.
        • Schmid M.
        • Birukov A.
        • Dahlmann A.
        • Linz P.
        • Janka R.
        • Uder M.
        • Schmieder R.E.
        • Titze J.M.
        • Eckardt K.U.
        Skin sodium concentration correlates with left ventricular hypertrophy in CKD.
        J. Am. Soc. Nephrol. 2017; 28: 1867-1876https://doi.org/10.1681/ASN.2016060662
        • Sega R.
        • Corrao G.
        • Bombelli M.
        • Beltrame L.
        • Facchetti R.
        • Grassi G.
        • Ferrario M.
        • Mancia G.
        Blood pressure variability and organ damage in a general population: results from the PAMELA study.
        Hypertension. 2002; 39: 710-714https://doi.org/10.1161/hy0202.104376
        • Sellmeyer D.E.
        • Schloetter M.
        • S. D.E.D.E.
        • Sebastian A.
        Excretion and bone resorption induced by a high sodium chloride diet.
        J. Clin. Endocrinol. Metab. 2008; 87: 2008-2012
        • Selvarajah V.
        • Connolly K.
        • McEniery C.
        • Wilkinson I.
        Skin sodium and hypertension: a paradigm shift?.
        Curr. Hypertens. Rep. 2018; 20https://doi.org/10.1007/s11906-018-0892-9
        • Selvarajah V.
        • Mäki-Petäjä K.M.
        • Pedro L.
        • Bruggraber S.F.A.
        • Burling K.
        • Goodhart A.K.
        • Brown M.J.
        • McEniery C.M.
        • Wilkinson I.B.
        Novel mechanism for buffering dietary salt in humans: effects of salt loading on skin sodium, vascular endothelial growth factor C, and blood pressure.
        Hypertension. 2017; 70: 930-937https://doi.org/10.1161/HYPERTENSIONAHA.117.10003
        • Sheldon R.S.
        • Grubb B.P.
        • Olshansky B.
        • Shen W.K.
        • Calkins H.
        • Brignole M.
        • Raj S.R.
        • Krahn A.D.
        • Morillo C.A.
        • Stewart J.M.
        • Sutton R.
        • Sandroni P.
        • Friday K.J.
        • Hachul D.T.
        • Cohen M.I.
        • Lau D.H.
        • Mayuga K.A.
        • Moak J.P.
        • Sandhu R.K.
        • Kanjwal K.
        2015 Heart Rhythm Society expert consensus statement on the diagnosis and treatment of postural tachycardia syndrome, inappropriate sinus tachycardia, and vasovagal syncope.
        Hear. Rhythm. 2015; 12: e41-e63https://doi.org/10.1016/j.hrthm.2015.03.029
        • Shenouda N.
        • Ramick M.G.
        • Lennon S.L.
        • Farquhar W.B.
        • Edwards D.G.
        High dietary sodium augments vascular tone and attenuates low-flow mediated constriction in salt-resistant adults.
        Eur. J. Appl. Physiol. 2020; 120: 1383-1389https://doi.org/10.1007/s00421-020-04370-0
        • Shi P.
        • Stocker S.D.
        • Toney G.M.
        Organum vasculosum laminae terminalis contributes to increased sympathetic nerve activity induced by central hyperosmolality.
        Am. J. Physiol. - Regul. Integr. Comp. Physiol. 2007; 293: 2279-2289https://doi.org/10.1152/ajpregu.00160.2007
        • Shibao C.
        • Lipsitz L.A.
        • Biaggioni I.
        ASH position paper: evaluation and treatment of orthostatic hypotension.
        J. Clin. Hypertens. 2013; 15: 147-153
        • Silvestrini M.
        • Vernieri F.
        • Pasqualetti P.
        • Matteis M.
        • Passarelli F.
        • Troisi E.
        • Caltagirone C.
        Impaired cerebral vasoreactivity and risk of stroke in patients with asymptomatic carotid artery stenosis.
        J. Am. Hear. Assoc. 2000; 283: 2122-2127
        • Simmonds S.S.
        • Lay J.
        • Stocker S.D.
        Dietary salt intake exaggerates sympathetic reflexes and increases blood pressure variability in normotensive rats.
        Hypertension. 2014; 64: 583-589https://doi.org/10.1161/HYPERTENSIONAHA.114.03250
        • Smith E.C.
        • Celedonio J.
        • Nwazue V.C.
        • Garland E.M.
        • Paranjape S.Y.
        • Chopoorian A.H.
        • Wahba A.
        • Biaggioni I.
        • Black B.
        • Shibao C.A.
        • Diedrich A.
        • Okamoto L.E.
        • Raj S.R.
        • Gamboa A.
        High-sodium diet does not worsen endothelial function in female patients with postural tachycardia syndrome.
        Clin. Auton. Res. 2021; https://doi.org/10.1007/s10286-021-00772-y
        • Smyth A.
        • O’Donnell M.J.
        • Yusuf S.
        • Clase C.M.
        • Teo K.K.
        • Canavan M.
        • Reddan D.N.
        • Mann J.F.E.
        Sodium intake and renal outcomes: a systematic review.
        Am. J. Hypertens. 2014; 27: 1277-1284https://doi.org/10.1093/ajh/hpt294
        • Starmans-Kool M.J.
        • Stanton A.V.
        • Xu Y.Y.
        • McG Thom S.A.
        • Parker K.H.
        • Hughes A.D.
        High dietary salt intake increases carotid blood pressure and wave reflection in normotensive healthy young men.
        J. Appl. Physiol. 2011; 110: 468-471https://doi.org/10.1152/japplphysiol.00917.2010
        • Stevens S.L.
        • Wood S.
        • Koshiaris C.
        • Law K.
        • Glasziou P.
        • Stevens R.J.
        • McManus R.J.
        Blood pressure variability and cardiovascular disease: systematic review and meta-analysis.
        BMJ. 2016; 354
        • Stewart J.M.
        • Boris J.R.
        • Chelimsky G.
        • Fischer P.R.
        • Fortunato J.E.
        • Grubb B.P.
        • Heyer G.L.
        • Jarjour I.T.
        • Medow M.S.
        • Numan M.T.
        • Pianosi P.T.
        • Singer W.
        • Tarbell S.
        • Chelimsky T.C.
        Pediatric disorders of orthostatic intolerance.
        Pediatrics. 2018; 141https://doi.org/10.1542/peds.2017-1673
        • Stocker S.D.
        • Lang S.M.
        • Simmonds S.S.
        • Wenner M.M.
        • Farquhar W.B.
        Cerebrospinal fluid hypernatremia elevates sympathetic nerve activity and blood pressure via the rostral ventrolateral medulla.
        Hypertension. 2015; 66: 1184-1190https://doi.org/10.1161/HYPERTENSIONAHA.115.05936
        • Stocker S.D.
        • Monahan K.D.
        • Browning K.N.
        Neurogenic and sympathoexcitatory actions of NaCl in hypertension.
        Curr. Hypertens. Rep. 2013; 15: 538-546https://doi.org/10.1038/jid.2014.371
        • Sung S.H.
        • Chen Z.Y.
        • Tseng T.W.
        • Lu D.Y.
        • Yu W.C.
        • Cheng H.M.
        • Chen C.H.
        Wave reflections, arterial stiffness, and orthostatic hypotension.
        Am. J. Hypertens. 2014; 27: 1446-1455https://doi.org/10.1093/ajh/hpu063
        • Sunwoo J.S.
        • Yang T.W.
        • Kim D.Y.
        • Lim J.A.
        • Kim T.J.
        • Byun J.I.
        • Moon J.
        • Lee S.T.
        • Jung K.H.
        • Park K.Il
        • Jung K.Y.
        • Kim M.
        • Lee S.K.
        • Chu K.
        Association of blood pressure variability with orthostatic intolerance symptoms.
        PLoS One. 2017; 12: 1-13https://doi.org/10.1371/journal.pone.0179132
        • Susic D.
        • Frohlich E.D.
        • Kobori H.
        • Shao W.
        • Seth D.
        • Navar L.G.
        Salt-induced renal injury in SHRs is mediated by AT1 receptor activation.
        J. Hypertens. 2011; 29: 716-723
        • Swift N.M.
        • Charkoudian N.
        • Dotson R.M.
        • Suarez G.A.
        • Low P.A.
        Baroreflex control of muscle sympathetic nerve activity in postural orthostatic tachycardia syndrome.
        Am. J. Physiol. - Hear. Circ. Physiol. 2005; 289: H1226-H1233https://doi.org/10.1152/ajpheart.01243.2004
        • Swift P.A.
        • Markandu N.D.
        • Sagnella G.A.
        • He F.J.
        • MacGregor G.A.
        Modest salt reduction reduces blood pressure and urine protein excretion in black hypertensives: a randomized control trial.
        Hypertension. 2005; 46: 308-312https://doi.org/10.1161/01.HYP.0000172662.12480.7f
        • Tasevska I.
        • Enhörning S.
        • Burri P.
        • Melander O.
        High salt intake increases copeptin but salt sensitivity is associated with fluid induced reduction of copeptin in women.
        Int. J. Hypertens. 2014; 2014https://doi.org/10.1155/2014/641587
        • Tavani A.
        • Negri E.
        • La Vecchia C.
        Food and nutrient intake and risk of cataract.
        Ann. Epidemiol. 1996; 6: 41-46https://doi.org/10.1016/1047-2797(95)00099-2
        • Thijssen D.H.J.
        • Bruno R.M.
        • Van Mil A.C.C.M.
        • Holder S.M.
        • Faita F.
        • Greyling A.
        • Zock P.L.
        • Taddei S.
        • Deanfield J.E.
        • Luscher T.
        • Green D.J.
        • Ghiadoni L.
        Expert consensus and evidence-based recommendations for the assessment of flow-mediated dilation in humans.
        Eur. Heart J. 2019; 40: 2534-2547https://doi.org/10.1093/eurheartj/ehz350
        • Thomson S.C.
        • Deng A.
        • Wead L.
        • Richter K.
        • Blantz R.C.
        • Vallon V.
        An unexpected role for angiotensin II in the link between dietary salt and proximal reabsorption.
        J. Clin. Invest. 2006; 116: 1110-1116https://doi.org/10.1172/JCI26092
        • Titze J.
        • Lang R.
        • Ilies C.
        • Schwind K.H.
        • Kirsch K.A.
        • Dietsch P.
        • Luft F.C.
        • Hilgers K.F.
        Osmotically inactive skin Na+ storage in rats.
        Am. J. Physiol. - Ren. Physiol. 2003; 285: 1108-1117https://doi.org/10.1152/ajprenal.00200.2003
        • Titze J.
        • Shakibaei M.
        • Schafflhuber M.
        • Schulze-Tanzil G.
        • Porst M.
        • Schwind K.H.
        • Dietsch P.
        • Hilgers K.F.
        Glycosaminoglycan polymerization may enable osmotically inactive Na + storage in the skin.
        Am. J. Physiol. - Hear. Circ. Physiol. 2004; 287: 203-208https://doi.org/10.1152/ajpheart.01237.2003
        • Tuomilehto J.
        • Jousilahti P.
        • Rastenyte D.
        • Moltchanov V.
        • Tanskanen A.
        • Pietinen P.
        • Nissinen A.
        Urinary sodium excretion and cardiovascular mortality in Finland: a prospective study.
        Lancet. 2001; 357: 848-851https://doi.org/10.1016/S0140-6736(00)04199-4
        • Tzemos N.
        • Lim P.O.
        • Wong S.
        • Struthers A.D.
        • MacDonald T.M.
        Adverse cardiovascular effects of acute salt loading in young normotensive individuals.
        Hypertension. 2008; 51: 1525-1530https://doi.org/10.1161/HYPERTENSIONAHA.108.109868
        • U.S. Department of Agriculture
        • U.S. Department of Health and Human Services
        Dietary Guidelines for Americans, 2020-2025.
        9th edition. 2020https://doi.org/10.1016/B978-0-323-60984-5.00062-7
        • van der Westhuizen B.
        • Schutte A.E.
        • Gafane-Matemane L.F.
        • Kruger R.
        Left ventricular mass independently associates with 24-hour sodium excretion in young masked hypertensive adults: the african-PREDICT study.
        Int. J. Cardiol. 2019; 276: 218-223
        • Varagic J.
        • Frohlich E.D.
        • Susic D.
        • Ahn J.
        • Matavelli L.
        • López B.
        • Díez J.
        AT1 receptor antagonism attenuates target organ effects of salt excess in SHRs without affecting pressure.
        Am. J. Physiol. - Hear. Circ. Physiol. 2008; 294: 853-858https://doi.org/10.1152/ajpheart.00737.2007
        • Vegter S.
        • Perna A.
        • Postma M.J.
        • Navis G.
        • Remuzzi G.
        • Ruggenenti P.
        Sodium intake, ACE inhibition, and progression to ESRD.
        J. Am. Soc. Nephrol. 2012; 23: 165-173https://doi.org/10.1681/ASN.2011040430
        • Verdecchia P.
        • Angeli F.
        • Gattobigio R.
        • Rapicetta C.
        • Reboldi G.
        Impact of blood pressure variability on cardiac and cerebrovascular complications in hypertension.
        Am. J. Hypertens. 2007; 20: 154-161
        • Vlachopoulos C.
        • Aznaouridis K.
        • Stefanadis C.
        Prediction of cardiovascular events and all-cause mortality with arterial stiffness. A systematic review and meta-analysis.
        J. Am. Coll. Cardiol. 2010; 55: 1318-1327https://doi.org/10.1016/j.jacc.2009.10.061
        • Webb M.
        • Fahimi S.
        • Singh G.M.
        • Khatibzadeh S.
        • Micha R.
        • Powles J.
        • Mozaffarian D.
        Cost effectiveness of a government supported policy strategy to decrease sodium intake: global analysis across 183 nations.
        BMJ. 2017; 356https://doi.org/10.1136/bmj.i6699
        • Wenstedt E.F.E.
        • Beugelink L.
        • Schrooten E.M.
        • Rademaker E.
        • Rorije N.M.G.
        • Wouda R.D.
        • Schlingemann R.O.
        • Wong T.Y.
        • Vogt L.
        High-salt intake affects retinal vascular tortuosity in healthy males: an exploratory randomized cross-over trial.
        Sci. Rep. 2021; 11: 1-8https://doi.org/10.1038/s41598-020-79753-6
        • Wenzel U.O.
        • Bode M.
        • Kurts C.
        • Ehmke H.
        Salt, inflammation, IL-17 and hypertension.
        Br. J. Pharmacol. 2019; 176: 1853-1863https://doi.org/10.1111/bph.14359
        • Wiig H.
        • Luft F.C.
        • Titze J.M.
        The interstitium conducts extrarenal storage of sodium and represents a third compartment essential for extracellular volume and blood pressure homeostasis.
        Acta Physiol. 2018; 222: 1-15https://doi.org/10.1111/apha.13006
        • Yu H.C.M.
        • Burrell L.M.
        • Black M.J.
        • Wu L.L.
        • Dilley R.J.
        • Cooper M.E.
        • Johnston C.I.
        Salt induces myocardial and renal fibrosis in normotensive and hypertensive rats.
        Circulation. 1998; 98: 2621-2628https://doi.org/10.1161/01.CIR.98.23.2621
        • Zamani P.
        • Bluemke D.A.
        • Jacobs D.R.
        • Duprez D.A.
        • Kronmal R.A.
        • Lilly S.M.
        • Ferrari V.A.
        • Townsend R.R.
        • Lima J.A.
        • Budoff M.
        • Segers P.
        • Hannan P.
        • Chirinos J.A.
        Resistive and pulsatile arterial load as predictors of left ventricular: mass and geometry: the multiethnic study of athersclerosis.
        Hypertension. 2015; 65: 85-92https://doi.org/10.1002/humu.21020.Gene
        • Zhang C.
        The role of inflammatory cytokines in endothelial dysfunction.
        Basic Res. Cardiol. 2008; 103: 398-406https://doi.org/10.1007/s00395-008-0733-0
        • Zhang Q.
        • Liao Y.
        • Tang C.
        • Du J.
        • Jin H.
        Twenty-four-hour urinary sodium excretion and postural orthostatic tachycardia syndrome.
        J. Pediatr. 2012; 161: 281-284https://doi.org/10.1016/j.jpeds.2012.01.054
        • Zhang W.C.
        • Zheng X.J.
        • Du L.J.
        • Sun J.Y.
        • Shen Z.X.
        • Shi C.
        • Sun S.
        • Zhang Z.
        • Chen X.Q.
        • Qin M.
        • Liu Xu.
        • Tao J.
        • Jia L.
        • Fan H.Y.
        • Zhou B.
        • Yu Y.
        • Ying H.
        • Hui L.
        • Liu Xiaolong
        • Yi X.
        • Liu Xiaojing
        • Zhang L.
        • Duan S.Z.
        High salt primes a specific activation state of macrophages, M(Na).
        Cell Res. 2015; 25: 893-910https://doi.org/10.1038/cr.2015.87