Cerebrovascular regulation in patients with vasovagal syncope and autonomic failure due to familial amyloidotic polyneuropathy


      • Pursuit Projection Regression is a nonlinear method to study myogenic and neurogenic mechanisms of cerebral autoregulation
      • Healthy controls, syncope, and autonomic failure groups were studied with head-up tilt test· In healthy subjects, tilt did not change the range or effectiveness of cerebral autoregulation.
      • During tilt, syncope group showed augmentation of range/effectiveness of cerebral autoregulation Autonomic failure showed an abnormally absent response of cerebral autoregulation during tilt



      While there is strong evidence for autonomic involvement in cerebrovascular function acutely, long-term role of autonomic nervous system in cerebrovascular function has been controversial. We assessed autoregulation in 10 healthy individuals, nine patients with vasovagal syncope (VVS), and nine with Familial Amyloidotic Polyneuropathy (FAP), in response to head-up tilt test (HUTT).


      Arterial blood pressure heart rate, cardiac output, and bilateral cerebral blood flow velocity (CBFV) at the M1 segment of middle cerebral artery (transcranial Doppler ultrasound) were recorded during supine rest and 70° HUTT. Autoregulation was quantified using a validated nonlinear and nonparametric approach based on projection pursuit regression. Plasma adrenaline and noradrenaline were also measured at rest and during HUTT.


      During supine rest and HUTT, plasma noradrenaline content was lower in FAP patients. During HUTT, VVS patients had a hyperadrenergic status; CBFV decreased in all groups, which was greater in FAP patients (p < 0.01). Healthy controls responded to HUTT with a reduction in CBFV responses to increases (p = 0.01) and decreases (p < 0.01) in arterial pressure without any change in the range or effectiveness of autoregulation. VVS patients responded to HUTT with a reduction in falling (p = 0.02), but not rising slope (p = 0.40). Autoregulatory range (p < 0.01) and effectiveness increased (p = 0.09), consistent with the rapid increase in levels of catecholamines. In FAP patients, the level of increase in range of autoregulation was significantly related to the magnitude of increase in plasma noradrenaline in response to HUTT (R2 = 0.26, p = 0.05).


      Autonomic dysfunction affects the cerebral autoregulatory response orthostatic to challenge.


      FAP (Familial Amyloidotic Polyneuropathy), VVS (Vasovagal syncope), HUT (Head-up tilt test), CBFV (Cerebral blood flow velocity)


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Autonomic Neuroscience: Basic and Clinical
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Ando Y.
        • Nakamura M.
        • Araki S.
        Transthyretin-related familial amyloidotic polyneuropathy.
        Arch. Neurol. 2005; 62: 1057-1062
        • Aqyagi M.
        • Deshmukh V.D.
        • Meyer J.S.
        • Kawamura Y.
        • Tagashira Y.
        Effect of beta-adrenergic blockade with propranolol on cerebral blood flow, autoregulation and CO2 responsiveness.
        Stroke. 1976; 7: 291-295
        • Azevedo E.
        • Castro P.
        • Santos R.
        • Freitas J.
        • Coelho T.
        • Rosengarten B.
        • Panerai R.
        Autonomic dysfunction affects cerebral neurovascular coupling.
        Clin. Auton. Res. 2011; 21: 395-403
        • Carey B.J.
        • Eames P.J.
        • Panerai R.B.
        • Potter J.F.
        Carbon dioxide, critical closing pressure and cerebral haemodynamics prior to vasovagal syncope in humans.
        Clin. Sci. (Lond.). 2001; 101: 351-358
        • Carey B.J.
        • Manktelow B.N.
        • Panerai R.B.
        • Potter J.F.
        Cerebral autoregulatory responses to head-up tilt in normal subjects and patients with recurrent vasovagal syncope.
        Circulation. 2001; 104: 898-902
        • Carvalho M.J.
        • van Den Meiracker A.H.
        • Boomsma F.
        • Lima M.
        • Freitas J.
        • Veld A.J.
        • Falcao De Freitas A.
        Diurnal blood pressure variation in progressive autonomic failure.
        Hypertension. 2000; 35: 892-897
        • Castro P.
        • Azevedo E.
        • Sorond F.
        Cerebral autoregulation in stroke.
        Curr. Atheroscler. Rep. 2018; 20: 37
        • Castro P.
        • Freitas J.
        • Santos R.
        • Panerai R.
        • Azevedo E.
        Indexes of cerebral autoregulation do not reflect impairment in syncope: insights from head-up tilt test of vasovagal and autonomic failure subjects.
        Eur. J. Appl. Physiol. 2017; 117: 1817-1831
        • Castro P.M.
        • Santos R.
        • Freitas J.
        • Panerai R.B.
        • Azevedo E.
        Autonomic dysfunction affects dynamic cerebral autoregulation during Valsalva maneuver: comparison between healthy and autonomic dysfunction subjects.
        J. Appl. Physiol. 2014; 117: 205-213
        • Coverdale N.S.
        • Gati J.S.
        • Opalevych O.
        • Perrotta A.
        • Shoemaker J.K.
        Cerebral blood flow velocity underestimates cerebral blood flow during modest hypercapnia and hypocapnia. 117. 2014: 1090-1096
        • De Raedt S.
        • De Vos A.
        • De Keyser J.
        Autonomic dysfunction in acute ischemic stroke: an underexplored therapeutic area?.
        J. Neurol. Sci. 2015; 348: 24-34
        • Eklöf B.
        • Ingvar D.H.
        • Kågström E.
        • Olin T.
        Persistence of cerebral blood flow autoregulation following chronic bilateral cervical sympathectomy in the monkey.
        Acta Physiol. Scand. 1971; 82: 172-176
        • Florea V.G.
        • Cohn J.N.
        The autonomic nervous system and heart failure.
        Circ. Res. 2014; 114: 1815-1826
        • Fog M.
        Cerebral circulation: II. Reaction of pial arteries to increase in blood pressure.
        Arch.Neurol.Psychiatry. 1939; 41: 260-268
        • Freitas J.
        • Santos R.
        • Azevedo E.
        • Carvalho M.
        • Boomsma F.
        • Meiracker A.
        • Falcao de Freitas A.
        • Abreu-Lima C.
        Hemodynamic, autonomic and neurohormonal behaviour of familial amyloidotic polyneuropathy and neurally mediated syncope patients during supine and orthostatic stress.
        Int. J. Cardiol. 2007; 116: 242-248
        • Fuente Mora C.
        • Palma J.A.
        • Kaufmann H.
        • Norcliffe-Kaufmann L.
        Cerebral autoregulation and symptoms of orthostatic hypotension in familial dysautonomia.
        J. Cereb. Blood Flow Metab. 2017; 37: 2414-2422
        • Gelpi F.
        • Bari V.
        • Cairo B.
        • De Maria B.
        • Tonon D.
        • Rossato G.
        • Faes L.
        • Porta A.
        Dynamic cerebrovascular autoregulation in patients prone to postural syncope: comparison of techniques assessing the autoregulation index from spontaneous variability series.
        Auton. Neurosci. 2022; 237102920
        • Goldstein D.S.
        • Holmes C.
        • Frank S.M.
        • Naqibuddin M.
        • Dendi R.
        • Snader S.
        • Calkins H.
        Sympathoadrenal imbalance before neurocardiogenic syncope.
        Am. J. Cardiol. 2003; 91: 53-58
        • Hamel E.
        Perivascular nerves and the regulation of cerebrovascular tone.
        J. Appl. Physiol. 2006; 100: 1059-1064
        • Hamel E.
        Perivascular nerves and the regulation of cerebrovascular tone.
        J. Appl. Physiol. 2006; 100: 1059-1064
        • Hamner J.W.
        • Ishibashi K.
        • Tan C.O.
        Revisiting human cerebral blood flow responses to augmented blood pressure oscillations.
        J. Physiol. 2019; 597: 1553-1564
        • Hamner J.W.
        • Tan C.O.
        Relative contributions of sympathetic, cholinergic, and myogenic mechanisms to cerebral autoregulation.
        Stroke. 2014; 45: 1771-1777
        • Hamner J.W.
        • Tan C.O.
        • Lee K.
        • Cohen M.A.
        • Taylor J.A.
        Sympathetic control of the cerebral vasculature in humans.
        Stroke. 2010; 41: 102-109
        • Hamner J.W.
        • Tan C.O.
        • Tzeng Y.C.
        • Taylor J.A.
        Cholinergic control of the cerebral vasculature in humans.
        J. Physiol. 2012; 590: 6343-6352
        • Maggio P.
        • Salinet A.S.
        • Panerai R.B.
        • Robinson T.G.
        Does hypercapnia-induced impairment of cerebral autoregulation affect neurovascular coupling? A functional TCD study.
        J. Appl. Physiol. 2013; 115: 491-497
        • Panerai R.B.
        • Eyre M.
        • Potter J.F.
        Multivariate modeling of cognitive-motor stimulation on neurovascular coupling: transcranial Doppler used to characterize myogenic and metabolic influences.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012; 303: R395-R407
        • Salinet A.S.
        • Robinson T.G.
        • Panerai R.B.
        Active, passive, and motor imagery paradigms: component analysis to assess neurovascular coupling.
        J. Appl. Physiol. 2013; 114: 1406-1412
        • Skinhoj E.
        The sympathetic nervous system and the regulation of cerebral blood flow in man.
        Stroke. 1972; 3: 711-716
        • Tan C.O.
        Defining the characteristic relationship between arterial pressure and cerebral flow.
        J. Appl. Physiol. 2012; 113: 1194-1200
        • van der Hoorn F.A.
        • Boomsma F.
        • Man in 't Veld A.J.
        • Schalekamp M.A.
        Determination of catecholamines in human plasma by high-performance liquid chromatography: comparison between a new method with fluorescence detection and an established method with electrochemical detection.
        J. Chromatogr. 1989; 487: 17-28
        • Vinik A.I.
        • Maser R.E.
        • Mitchell B.D.
        • Freeman R.
        Diabetic autonomic neuropathy.
        Diabetes Care. 2003; 26: 1553-1579
        • Waltz A.G.
        • Yamaguchi T.
        • Regli F.
        Regulatory responses of cerebral vasculature after sympathetic denervation.
        Am. J. Phys. 1971; 221: 298-302
        • Wesseling K.H.
        • Jansen J.R.
        • Settels J.J.
        • Schreuder J.J.
        Computation of aortic flow from pressure in humans using a nonlinear, three-element model.
        J. Appl. Physiol. 1993; 74: 2566-2573
        • Willie C.K.
        • Tzeng Y.C.
        • Fisher J.A.
        • Ainslie P.N.
        Integrative regulation of human brain blood flow.
        J. Physiol. 2014; 592: 841-859
        • Yoshida H.
        • Hamner J.W.
        • Ishibashi K.
        • Tan C.O.
        Relative contributions of systemic hemodynamic variables to cerebral autoregulation during orthostatic stress.
        J. Appl. Physiol. 2018; 124: 321-329