Advertisement

Exploring metrics for the characterization of the cerebral autoregulation during head-up tilt and propofol general anesthesia

      Highlights

      • Two metrics for assessing autoregulation index (ARI) from spontaneous variations are tested.
      • The two metrics exhibited a similar performance in passing individual surrogate test.
      • ARIs estimated by the two metrics might be different.
      • Head-up tilt and propofol general anesthesia do not affect cerebral autoregulation
      • This conclusion holds regardless of metric utilized for ARI estimation.

      Abstract

      Techniques grounded on the simultaneous utilization of Tiecks' second order differential equations and spontaneous variability of mean arterial pressure (MAP) and mean cerebral blood flow velocity (MCBFV), recorded from middle cerebral arteries through a transcranial Doppler device, provide a characterization of cerebral autoregulation (CA) via the autoregulation index (ARI). These methods exploit two metrics for comparing the measured MCBFV series with the version predicted by Tiecks' model: normalized mean square prediction error (NMSPE) and normalized correlation ρ. The aim of this study is to assess the two metrics for ARI computation in 13 healthy subjects (age: 27 ± 8 yrs., 5 males) at rest in supine position (REST) and during 60° head-up tilt (HUT) and in 19 patients (age: 64 ± 8 yrs., all males), scheduled for coronary artery bypass grafting, before (PRE) and after (POST) propofol general anesthesia induction. Analyses were carried out over the original MAP and MCBFV pairs and surrogate unmatched couples built individually via time-shifting procedure. We found that: i) NMSPE and ρ metrics exhibited similar performances in passing individual surrogate test; ii) the two metrics could lead to different ARI estimates; iii) CA was not different during HUT or POST compared to baseline and this conclusion held regardless of the technique and metric for ARI estimation. Results suggest a limited impact of the sympathetic control on CA.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Autonomic Neuroscience: Basic and Clinical
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology
        Heart rate variability. Standards of measurement, physiological interpretation, and clinical use.
        Eur. Heart J. 1996; 17: 354-381
        • Aaslid R.
        • Lindegaard K.F.
        • Sorteberg W.
        • et al.
        Cerebral autoregulation dynamics in humans.
        Stroke. 1989; 20: 45-52
        • Aaslid R.
        • Markwalder T.M.
        • Nornes H.
        Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries.
        J. Neurosurg. 1982; 57: 769-774
        • Andrzejak R.G.
        • Kraskov A.
        • Stogbauer H.
        • et al.
        Bivariate surrogate techniques: necessity, strengths, and caveats.
        Phys. Rev. E. 2003; 68066202
        • Angarita-Jaimes N.
        • Kouchakpour H.
        • Liu J.
        • et al.
        Optimising the assessment of cerebral autoregulation from black box models.
        Med. Eng. Phys. 2014; 36: 607-612
        • Bari V.
        • De Maria B.
        • Mazzucco C.E.
        • et al.
        Cerebrovascular and cardiovascular variability interactions investigated through conditional joint transfer entropy in subjects prone to postural syncope.
        Physiol. Meas. 2017; 38: 976-991
        • Bari V.
        • Fantinato A.
        • Vaini E.
        • et al.
        Impact of propofol general anesthesia on cardiovascular and cerebrovascular closed loop variability interactions.
        Biomed. Signal Process. Control. 2021; 68102735
        • Bari V.
        • Marchi A.
        • De Maria B.
        • et al.
        Nonlinear effects of respiration on the crosstalk between cardiovascular and cerebrovascular control systems.
        Philos. Trans. R. Soc. A. 2016; 374: 20150179
        • Bari V.
        • Vaini E.
        • Pistuddi V.
        • et al.
        Comparison of causal and non-causal strategies for the assessment of baroreflex sensitivity in predicting acute kidney dysfunction after coronary artery bypass grafting.
        Front. Physiol. 2019; 10: 1319
        • Baselli G.
        • Porta A.
        • Rimoldi O.
        • et al.
        Spectral decomposition in multichannel recordings based on multi-variate parametric identification.
        IEEE Trans. Biomed. Eng. 1997; 44: 1092-1101
        • Boer F.
        • Ros P.
        • Bovill J.G.
        • et al.
        Effect of propofol on peripheral vascular resistance during cardiopulmonary bypass.
        Br. J. Anaesth. 1990; 65: 184-189
        • Carey B.J.
        • Manktelow B.N.
        • Panerai R.B.
        • et al.
        Cerebral autoregulatory responses to head-up tilt in normal subjects and patients with recurrent vasovagal syncope.
        Circulation. 2001; 104: 898-902
        • Castro P.M.
        • Santos R.
        • Freitas J.
        • et al.
        Autonomic dysfunction affects dynamic cerebral autoregulation during valsalva maneuver: comparison between healthy and autonomic dysfunction subjects.
        J. Appl. Physiol. 2014; 117: 205-213
        • Castro P.
        • Freitas J.
        • Santos R.
        • et al.
        Indexes of cerebral autoregulation do not reflect impairment in syncope: insights from head-up tilt test of vasovagal and autonomic failure subjects.
        Eur. J. Appl. Physiol. 2017; 117: 1817-1831
        • Claassen J.A.
        • Meel-van den Abeelen A.S.
        • Simpson D.M.
        • et al.
        • on behalf of the International Cerebral Autoregulation Research Network (CARNet)
        Transfer function analysis of dynamic cerebral autoregulation: a white paper from the International Cerebral Autoregulation Research Network.
        J. Cereb. Blood Flow Metab. 2016; 36: 665-680
        • Claydon V.E.
        • Hainsworth R.
        Cerebral autoregulation during orthostatic stress in healthy controls and in patients with posturally related syncope.
        Clin. Auton. Res. 2003; 13: 321-329
        • Cooke W.H.
        • Hoag J.B.
        • Crossman A.A.
        • et al.
        Human responses to upright tilt: a window on central autonomic integration.
        J. Physiol. 1999; 517: 617-628
        • Czosnyka M.
        • Smielewski P.
        • Lavinio A.
        • et al.
        An assessment of dynamic autoregulation from spontaneous fluctuations of cerebral blood flow velocity: a comparison of two models, index of autoregulation and mean flow index.
        Anesth. Analg. 2008; 106: 234-239
        • Dawson S.L.
        • Blake M.J.
        • Panerai R.B.
        • et al.
        Dynamic but not static cerebral autoregulation is impaired in acute ischaemic stroke.
        Cerebrovasc. Dis. 2000; 10: 126-132
        • De Maria B.
        • Bari V.
        • Cairo B.
        • et al.
        Characterization of the asymmetry of the cardiac and sympathetic arms of the baroreflex from spontaneous variability during incremental head-up tilt.
        Front. Physiol. 2019; 10: 342
        • Dineen N.E.
        • Brodie F.G.
        • Robinson T.G.
        • et al.
        Continuous estimates of dynamic cerebral autoregulation during transient hypocapnia and hypercapnia.
        J. Appl. Physiol. 2010; 108: 604-613
        • Ebert T.J.
        • Muzi M.
        • Berens R.
        • et al.
        Sympathetic responses to induction of anesthesia in humans with propofol or etomidate.
        Anesthesiology. 1992; 76: 725-733
        • Engelhard K.
        • Werner C.
        • Möllenberg O.
        • et al.
        Effects of remifentanil/propofol in comparison with isoflurane on dynamic cerebrovascular autoregulation in humans.
        Acta Anaesthesiol.Scand. 2001; 45: 971-976
        • Faes L.
        • Porta A.
        • Rossato G.
        • et al.
        Investigating the mechanisms of cardiovascular and cerebrovascular regulation in orthostatic syncope through an information decomposition strategy.
        Auton. Neurosci. Basic Clin. 2013; 178: 76-82
        • Furlan R.
        • Porta A.
        • Costa F.
        • et al.
        Oscillatory patterns in sympathetic neural discharge and cardiovascular variables during orthostatic stimulus.
        Circulation. 2000; 101: 886-892
        • Gelpi F.
        • Bari V.
        • Cairo B.
        • et al.
        Dynamic cerebrovascular autoregulation in patients prone to postural syncope: comparison of techniques assessing the autoregulation index from spontaneous variability series.
        Auton. Neurosci. Basic Clin. 2022; 237102920
        • Hamner J.W.
        • Tan C.O.
        • Lee K.
        • et al.
        Sympathetic control of the cerebral vasculature in humans.
        Stroke. 2010; 41: 102-109
        • Keyl C.
        • Schneider A.
        • Dambacher M.
        • et al.
        Dynamic cardiocirculatory control during propofol anesthesia in mechanically ventilated patients.
        Anesth. Analg. 2000; 91: 1188-1195
        • Lassen N.A.
        Cerebral blood flow and oxygen consumption in man.
        Physiol. Rev. 1959; 39: 183-238
        • Lee Y.K.
        • Rothwell P.M.
        • Payne S.J.
        • et al.
        Reliability, reproducibility and validity of dynamic cerebral autoregulation in a large cohort with transient ischaemic attack or minor stroke.
        Physiol. Meas. 2020; 41095002
        • Mahdi A.
        • Nikolic D.
        • Birch A.A.
        • et al.
        Increased blood pressure variability upon standing up improves reproducibility of cerebral autoregulation indices.
        Med. Eng. Phys. 2017; 47: 151-158
        • Marchi A.
        • Bari V.
        • De Maria B.
        • et al.
        Calibrated variability of muscle sympathetic nerve activity during graded head-up tilt in humans and its link with noradrenaline data and cardiovascular rhythms.
        Am. J. Phys. 2016; 310: R1134-R1143
        • Montano N.
        • Gnecchi-Ruscone T.
        • Porta A.
        • et al.
        Power spectrum analysis of heart rate variability to assess changes in sympatho-vagal balance during graded orthostatic tilt.
        Circulation. 1994; 90: 1826-1831
        • Newell D.W.
        • Aaslid R.
        • Lam A.
        • et al.
        Comparison of flow and velocity during dynamic autoregulation testing in humans.
        Stroke. 1994; 25: 793-797
        • Ogawa Y.
        • Iwasaki K.
        • Aoki K.
        • et al.
        The different effects of midazolam and propofol sedation on dynamic cerebral autoregulation.
        Anesth. Analg. 2010; 111: 1279-1284
        • Panerai R.B.
        • Dawson S.L.
        • Eames P.J.
        • et al.
        Cerebral blood flow velocity response to induced and spontaneous sudden changes in arterial blood pressure.
        Am. J. Phys. 2001; 280: H2162-H2174
        • Panerai R.B.
        • Dawson S.L.
        • Potter J.F.
        Linear and nonlinear analysis of human dynamic cerebral autoregulation.
        Am. J. Phys. 1999; 277: H1089-H1099
        • Panerai R.B.
        • Eames P.J.
        • Potter J.F.
        Variability of time-domain indices of dynamic cerebral autoregulation.
        Physiol. Meas. 2003; 24: 367-381
        • Panerai R.B.
        • Haunton V.J.
        • Minhas J.S.
        • et al.
        Inter-subject analysis of transfer function coherence in studies of dynamic cerebral autoregulation.
        Physiol. Meas. 2018; 39125006
        • Panerai R.B.
        • White R.P.
        • Markus H.S.
        • et al.
        Grading of cerebral dynamic autoregulation from spontaneous fluctuations in arterial blood pressure.
        Stroke. 1998; 29: 2341-2346
        • Paulson O.B.
        • Strandgaard S.
        • Edvinsson L.
        Cerebral autoregulation.
        Cerebrovasc. Brain Metab. Rev. 1990; 2: 161-192
        • Penzel T.
        • Porta A.
        • Stefanovska A.
        • et al.
        Recent advances in physiological oscillations.
        Physiol. Meas. 2017; 38: E1-E7
        • Porta A.
        • Bari V.
        • Bassani T.
        • et al.
        Model-based causal closed-loop approach to the estimate of baroreflex sensitivity during propofol anesthesia in patients undergoing coronary artery bypass graft.
        J. Appl. Physiol. 2013; 115: 1032-1042
        • Porta A.
        • Baselli G.
        • Rimoldi O.
        • et al.
        Assessing baroreflex gain from spontaneous variability in conscious dogs: role of causality and respiration.
        Am. J. Phys. 2000; 279: H2558-H2567
        • Porta A.
        • Faes L.
        • Nollo G.
        • et al.
        Conditional self-entropy and conditional joint transfer entropy in heart period variability during graded postural challenge.
        PLoS ONE. 2015; 10e0132851
        • Porta A.
        • Gelpi F.
        • Bari V.
        • et al.
        Categorizing the role of respiration in cardiovascular and cerebrovascular variability interactions.
        IEEE Trans. Biomed. Eng. 2022; 69: 2065-2076
        • Porta A.
        • Guzzetti S.
        • Furlan R.
        • et al.
        Complexity and nonlinearity in short-term heart period variability: comparison of methods based on local nonlinear prediction.
        IEEE Trans. Biomed. Eng. 2007; 54: 94-106
        • Porta A.
        • Takahashi A.C.M.
        • Catai A.M.
        Cardiovascular coupling during graded postural challenge: comparison between linear tools and joint symbolic analysis.
        Braz. J. Phys. Ther. 2016; 20: 461-470
        • Porta A.
        • Tobaldini E.
        • Guzzetti S.
        • et al.
        Assessment of cardiac autonomic modulation during graded head-up tilt by symbolic analysis of heart rate variability.
        Am. J. Phys. 2007; 293: H702-H708
        • Sato M.
        • Tanaka M.
        • Umehara S.
        • et al.
        Baroreflex control of heart rate during and after propofol infusion in humans.
        Br. J. Anaesth. 2005; 94: 577-581
        • Schondorf R.
        • Stein R.
        • Roberts R.
        • et al.
        Dynamic cerebral autoregulation is preserved in neurally mediated syncope.
        J. Appl. Physiol. 2001; 91: 2493-2502
        • Sellgren J.
        • Ejnell H.
        • Elam M.
        • et al.
        Sympathetic muscle nerve activity, peripheral blood flows, and baroreceptor reflexes in humans during propofol anesthesia and surgery.
        Anesthesiology. 1994; 80: 534-544
        • Simpson D.M.
        • Panerai R.B.
        • Evans D.H.
        • et al.
        A parametric approach to measuring cerebral blood flow autoregulation from spontaneous variations in blood pressure.
        Ann. Biomed. Eng. 2001; 29: 18-25
        • Strandgaard S.
        • Paulson O.B.
        Cerebral autoregulation.
        Stroke. 1984; 15: 413-416
        • Strebel S.
        • Lam A.M.
        • Matta B.
        • et al.
        Dynamic and static cerebral autoregulation during isoflurane, desflurane, and propofol anesthesia.
        Anesthesiology. 1995; 83: 66-76
        • Tiecks F.P.
        • Lam A.M.
        • Aaslid R.
        • et al.
        Comparison of static and dynamic cerebral autoregulation measurements.
        Stroke. 1995; 26: 1014-1019
        • Vaini E.
        • Bari V.
        • Fantinato A.
        • et al.
        Causality analysis reveals the link between cerebrovascular control and acute kidney dysfunction after coronary artery bypass grafting.
        Physiol. Meas. 2019; 40064006
        • Van Leeuwen P.
        • Geue D.
        • Lange S.
        • et al.
        Is there evidence of fetal-maternal heart rate synchronization?.
        BMC Physiol. 2003; 3: 2
        • van Lieshout J.J.
        • Secher N.H.
        • Strandgaard S.
        • et al.
        Point/Counterpoint: sympathetic activity does/does not influence cerebral blood flow.
        J. Appl. Physiol. 2008; 290: 1364-1368
        • Zhang R.
        • Zuckerman J.H.
        • Iwasaki K.
        • et al.
        Autonomic neural control of dynamic cerebral autoregulation in humans.
        Circulation. 2002; 106: 1814-1820
        • Zhang R.
        • Zuckerman J.H.
        • Giller C.A.
        • et al.
        Transfer function analysis of dynamic cerebral autoregulation in humans.
        Am. J. Phys. 1998; 274: H233-H241