Mild thermal stimulation of the buttock skin increases urinary voiding efficiency in anesthetized rats


      • We applied mild thermal stimulation (25 °C–35 °C) to buttock skin.
      • Thermal stimulation increased voiding efficiency by affecting the urethra.
      • Voiding efficiency increases during stimulation were abolished by skin anesthesia.


      In the present study, we examined the effects of mild thermal stimulation of the skin on voiding efficiency using urethane-anesthetized rats with reduced voiding efficiency. Spontaneous urination was induced by infusing saline. For each voiding, the voiding efficiency was calculated from the voided volume and the bladder capacity measured. A Peltier thermode was attached to the buttock skin to apply stimulation: cooling between to 25 °C and 35 °C, every 20 s throughout the saline infusion. The voiding efficiency was 29 ± 9 % (mean ± SD) before stimulation and increased significantly by 10–15 % during stimulation. During thermal stimulation, the maximum vesical pressure during micturition was unchanged, but the urethral relaxation duration was significantly prolonged. Applying local anesthesia to the stimulated skin area abolished the changes in voiding efficiency in response to thermal stimulation. These results suggest that the excitation of cutaneous thermoreceptive afferents modulates urethral function during urination, thereby improving voiding efficiency.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Autonomic Neuroscience: Basic and Clinical
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Bosch J.L.H.R.
        • Kranse R.
        • van Mastrigt R.
        • Schröder F.H.
        Dependence of male voiding efficiency on age, bladder contractility and urethral resistance: development of a voiding efficiency nomogram.
        J. Urol. 1995; 154: 190-194
        • Chang H.H.
        • Yeh J.C.
        • Ichiyama R.M.
        • Rodriguez L.V.
        • Havton L.A.
        Mapping and neuromodulation of lower urinary tract function using spinal cord stimulation in female rats.
        Exp. Eurol. 2018; 305: 26-32
        • Cheng C.L.
        • de Groat W.C.
        Effect of ovariectomy on external urethral sphincter activity in anesthetized female rats.
        J. Urol. 2011; 186: 334-340
        • Chen J.
        • Gu B.
        • Wu G.
        • Tu H.
        • Si J.
        • Xu Y.
        • Andersson K.E.
        The effect of the 5-HT2A/2C receptor agonist DOI on micturition in rats with chronic spinal cord injury.
        J. Urol. 2013; 189: 1982-1988
        • Chen S.C.
        • Fan W.J.
        • Lai C.H.
        • Chen J.J.J.
        • Peng C.W.
        Effect of a 5-HT1A receptor agonist (8-OH-DPAT) on the external urethral sphincter activity in the rat.
        J. Formos. Med. Assoc. 2012; 111: 67-76
        • Chen Z.
        • Ishizuka O.
        • Imamura T.
        • Aizawa N.
        • Kurizaki Y.
        • Igawa Y.
        • Nishizawa O.
        • Andersson K.E.
        Stimulation of skin menthol receptors stimulates detrusor activity in conscious rats.
        Neurourol. Urodyn. 2010; 29: 506-511
        • Chung M.K.
        • Lee H.
        • Caterina M.J.
        Warm temperatures activate TRPV4 in mouse 308 keratinocytes.
        J. Biol. Chem. 2003; 278: 32037-32046
        • Cruz Y.
        • Downie J.W.
        Sexually dimorphic micturition in rats: relationship of perineal muscle activity to voiding pattern.
        Am J Physiol Regul Integr Comp Physiol. 2005; 289: R1307-R1318
        • de Groat W.C.
        Integrative control of the lower urinary tract: preclinical perspective.
        Br. J. Pharmacol. 2006; 147: S25-S40
        • Deruyver Y.
        • Weyne E.
        • Dewulf K.
        • Rietjens R.
        • Pinto S.
        • Van Ranst N.
        • Franken J.
        • Vanneste M.
        • Albersen M.
        • Gevaert T.
        • Vennekens R.
        • De Ridder D.
        • Voets T.
        • Everaerts W.
        Intravesical activation of the cation channel TRPV4 improves bladder function in a rat model for detrusor underactivity.
        Eur. Urol. 2018; 74: 336-345
        • Doeland H.J.
        • Nauta J.J.P.
        • van Zandbergen J.B.
        • van der Eerden H.A.M.
        • van Diemen N.G.J.
        • Bertelsmann F.W.
        • Heimans J.J.
        The relationship of cold and warmth cutaneous sensation to age and gender.
        Muscle Nerve. 1989; 12: 712-715
        • Guergova S.
        • Dufour A.
        Thermal sensitivity in the elderly: a review.
        Ageing Res. Rev. 2011; 10: 80-92
        • Güler A.D.
        • Lee H.
        • Lida T.
        • Shimizu I.
        • Tominaga M.
        • Caterina M.
        Heat-evoked activation of the ion channel, TRPV4.
        J. Neurosci. 2002; 22: 6408-6414
        • Hotta H.
        • Masunaga K.
        • Miyazaki S.
        • Watanabe N.
        • Kasuya Y.
        A gentle mechanical skin stimulation technique for inhibition of micturition contractions of the urinary bladder.
        Auton. Neurosci. 2012; 167: 12-20
        • Iimura K.
        • Watanabe N.
        • Hotta H.
        Effects of intermittent cold stimulation of the skin on voiding efficiency in anesthetized rats.
        in: Proceeding of the 99th Annual Meeting of the Physiological Society of Japan; March 16-18, 2022; Miyagi, Japan. J. Physiol. Sci. 2022 (in press)
        • Inoue Y.
        • Gerrett N.
        • Ichinose-Kuwahara T.
        • Umino Y.
        • Kiuchi S.
        • Amano T.
        • Ueda H.
        • Havenith G.
        • Kondo N.
        Sex differences in age-related changes on peripheral warm and cold innocuous thermal sensitivity.
        Physiol. Behav. 2016; 164: 86-92
        • Ishizuka O.
        • Imamura T.
        • Nishizawa O.
        Cold stress and urinary frequency.
        Low. Urin. Tract. Symptoms. 2012; 4: 67-74
        • Karnup S.V.
        • de Groat W.C.
        Propriospinal neurons of L3–L4 segments involved in control of the rat external urethral sphincter.
        Neuroscience. 2020; 425: 12-28
        • Kaufman A.
        • Sato A.
        • Sato Y.
        • Sugimoto H.
        Reflex changes in heart rate after mechanical and thermal stimulation of the skin at various segmental levels in cats.
        Neuroscience. 1977; 2: 103-109
        • Keller J.A.
        • Chen J.
        • Simpson S.
        • Wang E.H.J.
        • Lilascharoen V.
        • George O.
        • Lim B.K.
        • Stowers L.
        Voluntary urination control by brainstem neurons that relax the urethral sphincter.
        Nat. Neurosci. 2018; 21: 1229-1238
        • Kurosawa M.
        • Saito H.
        • Sato A.
        • Tsuchiya T.
        Reflex changes in sympatho-adrenal medullary functions in response to various thermal cutaneous stimulations in anesthetized rats.
        Neurosci. Lett. 1985; 56: 149-154
        • McKemy D.D.
        • Neuhausser W.M.
        • Julius D.
        Identification of a cold receptor reveals a general role for TRP channels in thermosensation.
        Nature. 2002; 416: 52-58
        • Nadelhaft I.
        • Vera P.L.
        Neurons in the rat brain and spinal cord labeled after pseudorabies virus injected into the external urethral sphincter.
        J. Comp. Neurol. 1996; 375: 502-517<502::AID-CNE11>3.0.CO;2-N
        • Oshiro T.
        • Kimura R.
        • Izumi K.
        • Ashikari A.
        • Saito S.
        • Miyazato M.
        Changes in urethral smooth muscle and external urethral sphincter function with age in rats.
        Physiol. Rep. 2020; 8e14643
        • Peier A.M.
        • Moqrich A.
        • Hergarden A.C.
        • Reeve A.J.
        • Andersson D.A.
        • Story G.M.
        • Earley T.J.
        • Dragoni I.
        • McIntyre P.
        • Bevan S.
        • Patapoutian A.
        A TRP channel that senses cold stimuli and menthol.
        Cell. 2002; 108: 705-715
        • Sato A.
        • Sato Y.
        • Sugimoto H.
        • Terui N.
        Reflex changes in the urinary bladder after mechanical and thermal stimulation of the skin at various segmental levels in cats.
        Neuroscience. 1977; 2: 111-117
        • Takahashi Y.
        • Takahashi K.
        • Moriya H.
        Mapping of dermatomes of the lower extremities based on an animal model.
        J. Neurosurg. 1995; 82: 1030-1034
        • Tominaga M.
        Liedtke W.B. Heller S. TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades. CRC Press/Taylor & Francis, Florida2007 (Chapter 20)
        • Uchida S.
        • Hotta H.
        • Hanada T.
        • Okuno Y.
        • Aikawa Y.
        Effects of thermal stimulation, applied to the hindpaw via a hot water bath, upon ovarian blood flow in anesthetized nonpregnant rats.
        J. Physiol. Sci. 2007; 57: 227-233
        • Uvin P.
        • Franken J.
        • Pinto S.
        • Rietjens R.
        • Grammet L.
        • Deruyver Y.
        • Alpizar Y.A.
        • Talavera K.
        • Vennekens R.
        • Everaerts W.
        • De Ridder D.
        • Voets T.
        Essential role of transient receptor potential M8 (TRPM8) in a model of acute cold-induced urinary urgency.
        Eur. Urol. 2015; 68: 655-661
        • Yoshiyama M.
        • Roppolo J.R.
        • Takeda M.
        • de Groat W.C.
        Effects of urethane on reflex activity of lower urinary tract in decerebrate unanesthetized rats.
        Am. J. Physiol. Renal. Physiol. 2013; 304: F390-F396