Advertisement

Exploring the interplay between mechanisms of neuroplasticity and cardiovascular health in aging adults: A multiple linear regression analysis study

  • Danylo F. Cabral
    Correspondence
    Correspondence to: D.F. Cabral, University of Miami Miller School of Medicine, Department of Physical Therapy, 5915 Ponce de Leon Blvd, 5th floor, Coral Gables, FL, USA.
    Affiliations
    Department of Physical Therapy, University of Miami Miller School of Medicine, Coral Gables, FL, USA
    Search for articles by this author
  • Marcelo Bigliassi
    Affiliations
    Department of Teaching and Learning, Florida International University, Miami, FL, USA
    Search for articles by this author
  • Gabriele Cattaneo
    Affiliations
    Institut Guttmann, Institut Universitari de Neurorehabilitació, Badalona, Spain

    Department of Medicine, Universitat Autónoma de Barcelona, Bellaterra, Spain
    Search for articles by this author
  • Tatjana Rundek
    Affiliations
    Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA

    Evelyn F. McKnight Brain Institute, University of Miami, Miami, FL, USA
    Search for articles by this author
  • Alvaro Pascual-Leone
    Affiliations
    Institut Guttmann, Institut Universitari de Neurorehabilitació, Badalona, Spain

    Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA

    Department of Neurology, Harvard Medical School, Boston, MA, USA
    Search for articles by this author
  • Lawrence P. Cahalin
    Affiliations
    Department of Physical Therapy, University of Miami Miller School of Medicine, Coral Gables, FL, USA
    Search for articles by this author
  • Joyce Gomes-Osman
    Correspondence
    Correspondence to: J.G. Osman, University of Miami Miller School of Medicine, Department of Neurology, 1150 NW 14th St #609, Miami 33136, FL, USA.
    Affiliations
    Department of Physical Therapy, University of Miami Miller School of Medicine, Coral Gables, FL, USA

    Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
    Search for articles by this author
Published:September 06, 2022DOI:https://doi.org/10.1016/j.autneu.2022.103023

      Highlights

      • We provide new insights into the association of TMS measures of neuroplasticity and cardiovascular health in aging adults.
      • HRR1 is the best cardiovascular health predictor of the efficacy of the mechanisms of neuroplasticity.
      • HRR1 is a potential surrogate marker of brain health.
      • VEGF and BDNF levels improve the model of the association between neuroplasticity and cardiovascular health.

      Abstract

      Background

      Neuroplasticity and cardiovascular health behavior are critically important factors for optimal brain health.

      Objective

      To assess the association between the efficacy of the mechanisms of neuroplasticity and metrics of cardiovascular heath in sedentary aging adults.

      Methods

      We included thirty sedentary individuals (age = 60.6 ± 3.8 y; 63 % female). All underwent assessments of neuroplasticity, measured by the change in amplitude of motor evoked potentials elicited by single-pulse Transcranial Magnetic Stimulation (TMS) at baseline and following intermittent Theta-Burst (iTBS) at regular intervals. Cardiovascular health measures were derived from the Incremental Shuttle Walking Test and included Heart Rate Recovery (HRR) at 1-min/2-min after test cessation. We also collected plasma levels of brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), and c-reactive protein.

      Results

      We revealed moderate but significant relationships between TMS-iTBS neuroplasticity, and the predictors of cardiovascular health (|r| = 0.38 to 0.53, p < .05). HRR1 was the best predictor of neuroplasticity (β = 0.019, p = .002). The best fit model (Likelihood ratio = 5.83, p = .016) of the association between neuroplasticity and HRR1 (β = 0.043, p = .002) was selected when controlling for demographics and health status. VEGF and BDNF plasma levels augmented the association between neuroplasticity and HRR1.

      Conclusions

      Our findings build on existing data demonstrating that TMS may provide insight into neuroplasticity and the role cardiovascular health have on its mechanisms. These implications serve as theoretical framework for future longitudinal and interventional studies aiming to improve cardiovascular and brain health. HRR1 is a potential prognostic measure of cardiovascular health and a surrogate marker of brain health in aging adults.

      Abbreviations:

      (Percent change.), HRR (Heart Rate Recovery.), ISWT (Incremental Shuttle Walking Test.), iTBS (Intermittent Theta-Burst Stimulation.), LTP (Long Term Potentiation.), TMS (Transcranial Magnetic Stimulation.)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Autonomic Neuroscience: Basic and Clinical
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Aicardi G.
        • Argilli E.
        • Cappello S.
        • Santi S.
        • Riccio M.
        • Thoenen H.
        • Canossa M.
        Induction of long-term potentiation and depression is reflected by corresponding changes in secretion of endogenous brain-derived neurotrophic factor.
        Proc. Natl. Acad. Sci. 2004; 101: 15788-15792https://doi.org/10.1073/pnas.0406960101
        • Andrews S.C.
        • Curtin D.
        • Hawi Z.
        • Wongtrakun J.
        • Stout J.C.
        • Coxon J.P.
        Intensity matters: high-intensity interval exercise enhances motor cortex plasticity more than moderate exercise.
        Cereb. Cortex. 2020; 30: 101-112https://doi.org/10.1093/cercor/bhz075
        • Barnes C.A.
        Long-term potentiation and the ageing brain.
        Philos.Trans.R.Soc.BBiol.Sci. 2003; 358: 765-772https://doi.org/10.1098/rstb.2002.1244
        • Borg G.A.
        Psychophysical bases of perceived exertion.
        Med. Sci. Sports Exerc. 1982; 14 (http://www.ncbi.nlm.nih.gov/pubmed/7154893): 377-381
        • Cabral D.F.
        • Rice J.
        • Morris T.P.
        • Rundek T.
        • Pascual-Leone A.
        • Gomes-Osman J.
        Exercise for brain health: an investigation into the underlying mechanisms guided by dose.
        Neurotherapeutics. 2019; 16: 580-599https://doi.org/10.1007/s13311-019-00749-w
        • Colcombe S.J.
        • Kramer A.F.
        • Erickson K.I.
        • Scalf P.
        • McAuley E.
        • Cohen N.J.
        • Webb A.
        • Jerome G.J.
        • Marquez D.X.
        • Elavsky S.
        Cardiovascular fitness, cortical plasticity, and aging.
        Proc. Natl. Acad. Sci. 2004; 101: 3316-3321https://doi.org/10.1073/pnas.0400266101
        • Colcombe S.J.
        • Kramer A.F.
        • McAuley E.
        • Erickson K.I.
        • Scalf P.
        Neurocognitive aging and cardiovascular fitness: recent findings and future directions.
        J. Mol. Neurosci. 2004; 24: 009-014https://doi.org/10.1385/JMN:24:1:009
        • Cole C.R.
        • Blackstone E.H.
        • Pashkow F.J.
        • Snader C.E.
        • Lauer M.S.
        Heart-rate recovery immediately after exercise as a predictor of mortality.
        N. Engl. J. Med. 1999; 341: 1351-1357https://doi.org/10.1056/NEJM199910283411804
        • Corp D.T.
        • Bereznicki H.G.K.
        • Clark G.M.
        • Youssef G.J.
        • Fried P.J.
        • Jannati A.
        • Davies C.B.
        • Gomes-Osman J.
        • Stamm J.
        • Chung S.W.
        • Bowe S.J.
        • Rogasch N.C.
        • Fitzgerald P.B.
        • Koch G.
        • Di Lazzaro V.
        • Pascual-Leone A.
        • Enticott P.G.
        Large-scale analysis of interindividual variability in theta-burst stimulation data: results from the “Big TMS Data Collaboration”.
        Brain Stimul. 2020; 13: 1476-1488https://doi.org/10.1016/J.BRS.2020.07.018
        • Cozlea D.L.
        • Farcas D.M.
        • Nagy A.
        • Keresztesi A.A.
        • Tifrea R.
        • Cozlea L.
        • Carașca E.
        The impact of C reactive protein on global cardiovascular risk on patients with coronary artery disease.
        Curr. Health Sci. J. 2013; 39 (/pmc/articles/PMC3945266/): 225
        • Craig C.L.
        • Marshall A.L.
        • Sjostrom M.
        • Bauman A.E.
        • Booth M.L.
        • Ainsworth B.E.
        • Pratt M.
        • Ekelund U.
        • Yngve A.
        • Sallis J.F.
        • Oja P.
        International physical activity questionnaire: 12-country reliability and validity.
        Med. Sci. Sports Exerc. 2003; 35: 1381-1395https://doi.org/10.1249/01.MSS.0000078924.61453.FB
        • Dampney R.A.L.
        Central neural control of the cardiovascular system: current perspectives.
        Adv. Physiol. Educ. 2016; 40: 283-296https://doi.org/10.1152/advan.00027.2016.-This
        • Dickins D.S.E.
        • Sale M.V.
        • Kamke M.R.
        Plasticity induced by intermittent theta burst stimulation in bilateral motor cortices is not altered in older adults.
        Neural Plast. 2015; 2015https://doi.org/10.1155/2015/323409
        • Ding Y.-H.
        • Li J.
        • Zhou Y.
        • Rafols J.
        • Clark J.
        • Ding Y.
        Cerebral angiogenesis and expression of angiogenic factors in aging rats after exercise.
        Curr. Neurovasc. Res. 2006; 3: 15-23https://doi.org/10.2174/156720206775541787
        • Dougherty R.J.
        • Jonaitis E.M.
        • Gaitán J.M.
        • Lose S.R.
        • Mergen B.M.
        • Johnson S.C.
        • Okonkwo O.C.
        • Cook D.B.
        Cardiorespiratory fitness mitigates brain atrophy and cognitive decline in adults at risk for Alzheimer's disease.
        AlzheimersDement. (Amsterdam, Netherlands). 2021; 13 (Amsterdam, Netherlands)https://doi.org/10.1002/DAD2.12212
        • Dourado V.Z.
        • Banov M.C.
        • Marino M.C.
        • De Souza V.L.
        • Antunes L.C.D.O.
        • McBurnie M.A.
        A simple approach to assess VT during a field walk test.
        Int. J. Sports Med. 2010; 31: 698-703https://doi.org/10.1055/s-0030-1255110
        • Dourado V.Z.
        • Vidotto M.C.
        • Guerra R.L.F.
        Reference equations for the performance of healthy adults on field walking tests.
        J. Bras. Pneumol. 2011; 37: 607-614https://doi.org/10.1590/S1806-37132011000500007
        • Dourado Victor Zuniga
        • Guerra R.L.F.
        • Tanni S.E.
        • Antunes L.C.de O.
        • Godoy I.
        Reference values for the incremental shuttle walk test in healthy subjects: from the walk distance to physiological responses.
        J.Bras.Pneumol. 2013; 39: 190-197https://doi.org/10.1590/S1806-37132013000200010
        • Driscoll I.
        • Martin B.
        • An Y.
        • Maudsley S.
        • Ferrucci L.
        • Mattson M.P.
        • Resnick S.M.
        Plasma BDNF is associated with age-related white matter atrophy but not with cognitive function in older,non-demented adults.
        PLoS ONE. 2012; 7e35217https://doi.org/10.1371/journal.pone.0035217
        • España-Irla G.
        • Gomes-Osman J.
        • Cattaneo G.
        • Albu S.
        • Cabello-Toscano M.
        • Solana-Sanchéz J.
        • Redondo-Camós M.
        • Delgado-Gallén S.
        • Alviarez-Schulze V.
        • Pachón-García C.
        • Tormos J.M.
        • Bartrés-Faz D.
        • Morris T.P.
        • Pascual-Leone Á.
        Associations between cardiorespiratory fitness, cardiovascular risk, and cognition are mediated by structural brain health in midlife.
        J. Am. Heart Assoc. 2021; 10: 20688https://doi.org/10.1161/JAHA.120.020688
        • Farmer J.
        • Zhao X.
        • Van Praag H.
        • Wodtke K.
        • Gage F.H.
        • Christie B.R.
        Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague–Dawley rats in vivo.
        Neuroscience. 2004; 124: 71-79https://doi.org/10.1016/J.NEUROSCIENCE.2003.09.029
        • Farnsworth C.D.D.
        • Cannon M.
        Exercise prescription.
        in: The Sports Medicine Resource Manual. Elsevier, 2008: 497-506https://doi.org/10.1016/B978-141603197-0.10039-4
        • Fecchio R.Y.
        • Brito L.
        • Leicht A.S.
        • Forjaz C.L.M.
        • Peçanha T.
        Reproducibility of post-exercise heart rate recovery indices: a systematic review.
        Auton.Neurosci. 2019; 221https://doi.org/10.1016/j.autneu.2019.102582
        • Freitas C.
        • Farzan F.
        • Pascual-Leone A.
        Assessing brain plasticity across the lifespan with transcranial magnetic stimulation: why, how, and what is the ultimate goal?.
        Front. Neurosci. 2013; 7: 1-17https://doi.org/10.3389/fnins.2013.00042
        • Freitas C.
        • Perez J.
        • Knobel M.
        • Tormos J.M.
        • Oberman L.
        • Eldaief M.
        • Bashir S.
        • Vernet M.
        • Peña-Gómez C.
        • Pascual-Leone A.
        Changes in cortical plasticity across the lifespan.
        <sb:contribution><sb:title>Front. Aging</sb:title></sb:contribution><sb:host><sb:issue><sb:series><sb:title>Neurosci.</sb:title></sb:series></sb:issue></sb:host>. 2011; 3: 1-8https://doi.org/10.3389/fnagi.2011.00005
        • Fried P.J.
        • Santarnecchi E.
        • Antal A.
        • Bartres-Faz D.
        • Bestmann S.
        • Carpenter L.L.
        • Celnik P.
        • Edwards D.
        • Farzan F.
        • Fecteau S.
        • George M.S.
        • He B.
        • Kim Y.H.
        • Leocani L.
        • Lisanby S.H.
        • Loo C.
        • Luber B.
        • Nitsche M.A.
        • Paulus W.
        • Pascual-Leone A.
        Training in the practice of noninvasive brain stimulation: recommendations from an IFCN committee.
        Clin. Neurophysiol. 2021; 132: 819-837https://doi.org/10.1016/J.CLINPH.2020.11.018
        • Fried P.J.
        • Schilberg L.
        • Brem A.-K.
        • Saxena S.
        • Wong B.
        • Cypess A.M.
        • Horton E.S.
        • Pascual-Leone A.
        Humans with type-2 diabetes show abnormal long-term potentiation-like cortical plasticity associated with verbal learning deficits.
        J. Alzheimers Dis. 2016; 55: 89-100https://doi.org/10.3233/JAD-160505
        • Gomes-Osman J.
        • Cabral D.F.
        • Hinchman C.
        • Jannati A.
        • Morris T.P.
        • Pascual-Leone A.
        The effects of exercise on cognitive function and brain plasticity - a feasibility trial.
        Restor. Neurol. Neurosci. 2017; 35https://doi.org/10.3233/RNN-170758
        • Gorelick P.B.
        • Furie K.L.
        • Iadecola C.
        • Smith E.E.
        • Waddy S.P.
        • Lloyd-Jones D.M.
        • Bae H.-J.
        • Bauman M.A.
        • Dichgans M.
        • Duncan P.W.
        • Girgus M.
        • Howard V.J.
        • Lazar R.M.
        • Seshadri S.
        • Testai F.D.
        • van Gaal S.
        • Yaffe K.
        • Wasiak H.
        • Zerna C.
        Defining optimal brain health in adults: a presidential advisory from the American Heart Association/American Stroke Association.
        Stroke. 2017; 48https://doi.org/10.1161/STR.0000000000000148
        • Harrison S.L.
        • Greening N.J.
        • Houchen-Wolloff L.
        • Bankart J.
        • Morgan M.D.L.
        • Steiner M.C.
        • Singh S.J.
        Age-specific normal values for the incremental shuttle walk test in a healthy British population.
        J.Cardiopulm.Rehabil.Prev. 2013; 33: 309-313https://doi.org/10.1097/HCR.0b013e3182a0297e
        • Hötting K.
        • Röder B.
        Beneficial effects of physical exercise on neuroplasticity and cognition.
        in: Neuroscience And Biobehavioral Reviews. Vol. 37. Pergamon, 2013: 2243-2257https://doi.org/10.1016/j.neubiorev.2013.04.005 (Issue 9)
        • Huang Y.-Z.
        • Chen R.-S.
        • Rothwell J.C.
        • Wen H.-Y.
        The after-effect of human theta burst stimulation is NMDA receptor dependent.
        Clin. Neurophysiol. 2007; 118: 1028-1032https://doi.org/10.1016/j.clinph.2007.01.021
        • Huang Y.-Z.
        • Edwards M.J.
        • Rounis E.
        • Bhatia K.P.
        • Rothwell J.C.
        Theta burst stimulation of the human motor cortex.
        Neuron. 2005; 45: 201-206https://doi.org/10.1016/j.neuron.2004.12.033
        • Hullinger R.
        • Puglielli L.
        Molecular and cellular aspects of age-related cognitive decline and Alzheimer's disease.
        Behav. Brain Res. 2017; 322: 191-205https://doi.org/10.1016/j.bbr.2016.05.008
        • Intzandt B.
        • Vrinceanu T.
        • Pothier K.
        • Nigam A.
        • Vu T.M.
        • Li K.
        • Berryman N.
        • Gauthier C.
        • Bherer L.
        Systolic blood pressure and heart rate recovery are related to cognition in healthy older adults.
        Med. Sci. Sports Exerc. 2020; 52 (8-8)https://doi.org/10.1249/01.mss.0000670028.56653.08
        • Iseger T.A.
        • Arns M.
        • Downar J.
        • Blumberger D.M.
        • Daskalakis Z.J.
        • Vila-Rodriguez F.
        Cardiovascular differences between sham and active iTBS related to treatment response in MDD.
        Brain Stimul. 2020; 13: 167-174https://doi.org/10.1016/J.BRS.2019.09.016/ATTACHMENT/D32002D9-F9AE-4529-80B3-FFD84F389179/MMC1.XML
        • Iseger T.A.
        • Padberg F.
        • Kenemans J.L.
        • van Dijk H.
        • Arns M.
        Neuro-Cardiac-Guided TMS (NCG TMS): a replication and extension study.
        Biol. Psychol. 2021; 162https://doi.org/10.1016/J.BIOPSYCHO.2021.108097
        • Janelidze S.
        • Hertze J.
        • Nägga K.
        • Nilsson K.
        • Nilsson C.
        • Group S.B.S.
        • Wennström M.
        • Westen D.van
        • Blennow K.
        • Zetterberg H.
        • Hansson O.
        Increased blood-brain barrier permeability is associated with dementia and diabetes but not amyloid pathology or APOE genotype.
        Neurobiol. Aging. 2017; 51: 104https://doi.org/10.1016/J.NEUROBIOLAGING.2016.11.017
        • Johnson A.K.
        • Xue B.
        Central nervous system neuroplasticity and the sensitization of hypertension.
        Nat. Rev. Nephrol. 2018; 14: 750-766https://doi.org/10.1038/s41581-018-0068-5
        • Kumar S.
        • Zomorrodi R.
        • Ghazala Z.
        • Goodman M.S.
        • Blumberger D.M.
        • Cheam A.
        • Fischer C.
        • Daskalakis Z.J.
        • Mulsant B.H.
        • Pollock B.G.
        • Rajji T.K.
        Extent of dorsolateral prefrontal cortex plasticity and its association with working memory in patients with Alzheimer disease.
        JAMA Psychiatry. 2017; 74: 1266-1274https://doi.org/10.1001/JAMAPSYCHIATRY.2017.3292
        • Kusumanto Y.H.
        • Meijer C.
        • Dam W.
        • Mulder N.H.
        • Hospers G.A.P.
        Circulating vascular endothelial growth factor (VEGF) levels in advanced stage cancer patients compared to normal controls and diabetes mellitus patients with critical ischemia.
        Drug Target Insights. 2007; 2 (http://www.ncbi.nlm.nih.gov/pubmed/21901067): 105-109
        • Lamberts R.P.
        • Lemmink K.A.P.M.
        • Durandt J.J.
        • Lambert M.I.
        Variation in heart rate during submaximal exercise: implications for monitoring training.
        J.StrengthCond.Res. 2004; 18: 641-645https://doi.org/10.1519/1533-4287(2004)18<641:VIHRDS>2.0.CO;2
        • Lee B.H.
        • Kim H.
        • Park S.H.
        • Kim Y.K.
        Decreased plasma BDNF level in depressive patients.
        J. Affect. Disord. 2007; 101: 239-244https://doi.org/10.1016/J.JAD.2006.11.005
        • Loe H.
        • Nes B.M.
        • Wisløff U.
        Predicting VO2peak from submaximal- and peak exercise models: the HUNT 3 fitness study, Norway.
        PLoS ONE. 2016; 11https://doi.org/10.1371/JOURNAL.PONE.0144873
        • Makovac E.
        • Thayer J.F.
        • Ottaviani C.
        A meta-analysis of non-invasive brain stimulation and autonomic functioning: implications for brain-heart pathways to cardiovascular disease.
        Neurosci. Biobehav. Rev. 2017; 74: 330-341https://doi.org/10.1016/j.neubiorev.2016.05.001
        • Malpas S.C.
        Sympathetic nervous system overactivity and its role in the development of cardiovascular disease.
        Physiol. Rev. 2010; 90: 513-557https://doi.org/10.1152/PHYSREV.00007.2009/ASSET/IMAGES/LARGE/Z9J0021025370009.JPEG
        • Mang C.S.
        • Campbell K.L.
        • Ross C.J.D.
        • Boyd L.A.
        Promoting neuroplasticity for motor rehabilitation after stroke: considering the effects of aerobic exercise and genetic variation on brain-derived neurotrophic factor.
        Phys. Ther. 2013; 93: 1707-1716https://doi.org/10.2522/ptj.20130053
        • Mehta S.
        The Association of Cognitive Function With Autonomic-cardiovascular Reactivity to And Recovery From Stress.
        Old Dominion University, 2012https://doi.org/10.25777/56ks-3w19
        • Michelini L.C.
        • O’Leary D.S.
        • Raven P.B.
        • Nóbrega A.C.L.
        Neural control of circulation and exercise: a translational approach disclosing interactions between central command, arterial baroreflex, and muscle metaboreflex.
        Am. J. Phys. Heart Circ. Phys. 2015; 309: H381-H392https://doi.org/10.1152/ajpheart.00077.2015
        • Michelini L.C.
        • Stern J.E.
        Exercise-induced neuronal plasticity in central autonomic networks: role in cardiovascular control.
        in: Experimental Physiology. Vol. 94. Blackwell Publishing Ltd., 2009: 947-960https://doi.org/10.1113/expphysiol.2009.047449 (Issue 9)
        • Mora F.
        • Segovia G.
        • del Arco A.
        Aging, plasticity and environmental enrichment: structural changes and neurotransmitter dynamics in several areas of the brain.
        Brain Res. Rev. 2007; 55: 78-88https://doi.org/10.1016/J.BRAINRESREV.2007.03.011
        • Mueller P.J.
        Exercise training and sympathetic nervous system activity: evidence for physical activity dependent neural plasticity.
        Clin. Exp. Pharmacol. Physiol. 2007; 34: 377-384https://doi.org/10.1111/j.1440-1681.2007.04590.x
        • Neves C.D.C.
        • Lacerda A.C.R.
        • Lage V.K.S.
        • Lima L.P.
        • Fonseca S.F.
        • De Avelar N.C.P.
        • Teixeira M.M.
        • Mendonça V.A.
        Cardiorespiratory responses and prediction of peak oxygen uptake during the shuttle walking test in healthy sedentary adult men.
        PLoS ONE. 2015; 10: 1-9https://doi.org/10.1371/journal.pone.0117563
        • Nicolini C.
        • Toepp S.
        • Harasym D.
        • Michalski B.
        • Fahnestock M.
        • Gibala M.J.
        • Nelson A.J.
        No changes in corticospinal excitability, biochemical markers, and working memory after six weeks of high-intensity interval training in sedentary males.
        Physiol.Rep. 2019; 7: 1-15
        • Oppewal A.
        • Hilgenkamp T.I.M.
        • van Wijck R.
        • Evenhuis H.M.
        Heart rate recovery after the 10-m incremental shuttle walking test in older adults with intellectual disabilities.
        Res. Dev. Disabil. 2014; 35: 696-704https://doi.org/10.1016/j.ridd.2013.12.006
        • Ozdemir R.A.
        • Tadayon E.
        • Boucher P.
        • Sun H.
        • Momi D.
        • Ganglberger W.
        • Westover M.B.
        • Pascual-Leone A.
        • Santarnecchi E.
        • Shafi M.M.
        Cortical responses to noninvasive perturbations enable individual brain fingerprinting.
        Brain Stimul. 2021; 14: 391-403https://doi.org/10.1016/J.BRS.2021.02.005/ATTACHMENT/844B796C-8DE2-4701-9A87-9E0E43769C85/MMC1.DOCX
        • Pascual-Leone A.
        • Amedi A.
        • Fregni F.
        • Merabet L.B.
        The plastic human brain cortex.
        Annu. Rev. Neurosci. 2005; 28: 377-401https://doi.org/10.1146/annurev.neuro.27.070203.144216
        • Pascual-Leone A.
        • Freitas C.
        • Oberman L.
        • Horvath J.C.
        • Halko M.
        • Eldaief M.
        • Bashir S.
        • Vernet M.
        • Shafi M.
        • Westover B.
        • Vahabzadeh-Hagh A.M.
        • Rotenberg A.
        Characterizing brain cortical plasticity and network dynamics across the age-span in health and disease with TMS-EEG and TMS-fMRI.
        Brain Topogr. 2011; 24: 302-315https://doi.org/10.1007/S10548-011-0196-8
        • Phillips C.
        Lifestyle modulators of neuroplasticity: how physical activity, mental engagement, and diet promote cognitive health during aging.
        Neural Plasticity. 2017; 2017https://doi.org/10.1155/2017/3589271
        • Poggesi A.
        • Pasi M.
        • Pescini F.
        • Pantoni L.
        • Inzitari D.
        Circulating biologic markers of endothelial dysfunction in cerebral small vessel disease: a review.
        J. Cereb. Blood Flow Metab. 2016; 36: 72https://doi.org/10.1038/JCBFM.2015.116
        • Puri R.
        • Hinder M.R.
        • Canty A.J.
        • Summers J.J.
        Facilitatory non-invasive brain stimulation in older adults: the effect of stimulation type and duration on the induction of motor cortex plasticity.
        Exp. Brain Res. 2016; 234: 3411-3423https://doi.org/10.1007/S00221-016-4740-3
        • Qiu S.
        • Cai X.
        • Sun Z.
        • Li L.
        • Zuegel M.
        • Steinacker J.M.
        • Schumann U.
        Heart rate recovery and risk of cardiovascular events and all-cause mortality: a meta-analysis of prospective cohort studies.
        J. Am. Heart Assoc. 2017; 6https://doi.org/10.1161/JAHA.117.005505
        • Qiu S.H.
        • Xue C.
        • Sun Z.L.
        • Steinacker J.M.
        • Zügel M.
        • Schumann U.
        Attenuated heart rate recovery predicts risk of incident diabetes: insights from a meta-analysis.
        Diabet. Med. 2017; 34: 1676-1683https://doi.org/10.1111/dme.13517
        • Raimondo F.
        • Azzaro M.
        • Palumbo G.
        • Bagnato S.
        • Stagno F.
        • Giustolisi G.
        • Cacciola E.
        • Sortino G.
        • Guglielmo P.
        • Giustolisi R.
        Elevated vascular endothelial growth factor (VEGF) serum levels in idiopathic myelofibrosis.
        Leukemia. 2001; 15: 976-980https://doi.org/10.1038/sj.leu.2402124
        • Rossi S.
        • Antal A.
        • Bestmann S.
        • Bikson M.
        • Brewer C.
        • Brockmöller J.
        • Carpenter L.L.
        • Cincotta M.
        • Chen R.
        • Daskalakis J.D.
        • Di Lazzaro V.
        • Fox M.D.
        • George M.S.
        • Gilbert D.
        • Kimiskidis V.K.
        • Koch G.
        • Ilmoniemi R.J.
        • Lefaucheur J.P.
        • Leocani L.
        • Hallett M.
        Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: expert guidelines.
        Clin. Neurophysiol. 2021; 132: 269-306https://doi.org/10.1016/j.clinph.2020.10.003
        • Rossi S.
        • Hallett M.
        • Rossini P.M.
        • Pascual-Leone A.
        Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research.
        Clin. Neurophysiol. 2009; 120: 2008-2039https://doi.org/10.1016/j.clinph.2009.08.016
        • Rossini P.
        • Burke D.
        • Chen R.
        • Cohen L.
        • Daskalakis Z.
        • Di Iorio R.
        • Di Lazzaro V.
        • Ferreri F.
        • Fitzgerald P.
        • George M.
        • Hallett M.
        • Lefaucheur J.
        • Langguth B.
        • Matsumoto H.
        • Miniussi C.
        • Nitsche M.
        • Pascual-Leone A.
        • Paulus W.
        • Rossi S.
        • Ziemann U.
        Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N.Committee.
        Clin. Neurophysiol. 2015; 126: 1071-1107https://doi.org/10.1016/j.clinph.2015.02.001
        • Schaap L.A.
        • Pluijm S.M.F.
        • Deeg D.J.H.
        • Visser M.
        Inflammatory markers and loss of muscle mass (sarcopenia) and strength.
        Am. J. Med. 2006; 119https://doi.org/10.1016/j.amjmed.2005.10.049
        • Schestatsky P.
        • Simis M.
        • Freeman R.
        • Pascual-Leone A.
        • Fregni F.
        Non-invasive brain stimulation and the autonomic nervous system.
        Clin. Neurophysiol. 2013; 124: 1716-1728https://doi.org/10.1016/j.clinph.2013.03.020
        • Shigihara Y.
        • Hoshi H.
        • Shinada K.
        • Okada T.
        • Kamada H.
        Non-pharmacological treatment changes brain activity in patients with dementia.
        Sci. Rep. 2020; 10: 1-9https://doi.org/10.1038/s41598-020-63881-0
        • Singh S.J.
        • Morgan M.D.
        • Scott S.
        • Walters D.
        • Hardman A.E.
        Development of a shuttle walking test of disability in patients with chronic airways obstruction.
        Thorax. 1992; 47: 1019-1024https://doi.org/10.1136/thx.47.12.1019
        • Smets P.
        • Devauchelle-Pensec V.
        • Rouzaire P.-O.
        • Pereira B.
        • Andre M.
        • Soubrier M.
        Vascular endothelial growth factor levels and rheumatic diseases of the elderly.
        Arthritis Res.Ther. 2016; 18https://doi.org/10.1186/S13075-016-1184-X
        • Stagg C.J.
        • Wylezinska M.
        • Matthews P.M.
        • Johansen-Berg H.
        • Jezzard P.
        • Rothwell J.C.
        • Bestmann S.
        Neurochemical effects of theta burst stimulation as assessed by magnetic resonance spectroscopy.
        J. Neurophysiol. 2009; 101: 2872-2877https://doi.org/10.1152/jn.91060.2008
        • Tay J.
        • Goss A.M.
        • Locher J.L.
        • Ard J.D.
        • Gower B.A.
        Physical function and strength in relation to inflammation in older adults with obesity and increased cardiometabolic risk.
        J.Nutr.HealthAging. 2019; 23: 949-957https://doi.org/10.1007/s12603-019-1260-4
        • Tomaszczyk J.C.
        • Green N.L.
        • Frasca D.
        • Colella B.
        • Turner G.R.
        • Christensen B.K.
        • Green R.E.A.
        Negative neuroplasticity in chronic traumatic brain injury and implications for neurorehabilitation.
        Neuropsychol. Rev. 2014; 24: 409https://doi.org/10.1007/s11065-014-9273-6
        • Tremblay S.
        • Rogasch N.C.
        • Premoli I.
        • Blumberger D.M.
        • Casarotto S.
        • Chen R.
        • Di Lazzaro V.
        • Farzan F.
        • Ferrarelli F.
        • Fitzgerald P.B.
        • Hui J.
        • Ilmoniemi R.J.
        • Kimiskidis V.K.
        • Kugiumtzis D.
        • Lioumis P.
        • Pascual-Leone A.
        • Pellicciari M.C.
        • Rajji T.
        • Thut G.
        • Daskalakis Z.J.
        Clinical utility and prospective of TMS-EEG.
        Clin.Neurophysiol. 2019; 130: 802-844https://doi.org/10.1016/J.CLINPH.2019.01.001
        • Tremblay S.
        • Vernet M.
        • Bashir S.
        • Pascual-Leone A.
        • Théoret H.
        Theta burst stimulation to characterize changes in brain plasticity following mild traumatic brain injury: a proof-of-principle study.
        Restor. Neurol. Neurosci. 2015; 33: 611-620https://doi.org/10.3233/RNN-140459
        • Trigiani L.J.
        • Hamel E.
        An endothelial link between the benefits of physical exercise in dementia.
        J. Cereb. Blood Flow Metab. 2017; 37: 2649-2664https://doi.org/10.1177/0271678X17714655
        • Trzepacz P.T.
        • Hochstetler H.
        • Wang S.
        • Walker B.
        • Saykin A.J.
        • <collab>Alzheimer's Disease Neuroimaging Initiative for the A.D.N</collab>
        Relationship between the Montreal Cognitive Assessment and Mini-mental State Examination for assessment of mild cognitive impairment in older adults.
        BMC Geriatr. 2015; 15: 107https://doi.org/10.1186/s12877-015-0103-3
        • von Elm E.
        • Altman D.G.
        • Egger M.
        • Pocock S.J.
        • Gøtzsche P.C.
        • Vandenbroucke J.P.
        The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies.
        Lancet. 2007; 370: 1453-1457https://doi.org/10.1016/S0140-6736(07)61602-X
        • Wåhlin-Larsson B.
        • Wilkinson D.J.
        • Strandberg E.
        • Hosford-Donovan A.
        • Atherton P.J.
        • Kadi F.
        Mechanistic links underlying the impact of C-reactive protein on muscle mass in elderly.
        Cell. Physiol. Biochem. 2017; 44: 267-278https://doi.org/10.1159/000484679
        • Whelton P.K.
        • Carey R.M.
        • Aronow W.S.
        • Casey D.E.
        • Collins K.J.
        • Himmelfarb C.D.
        • DePalma S.M.
        • Gidding S.
        • Jamerson K.A.
        • Jones D.W.
        • MacLaughlin E.J.
        • Muntner P.
        • Ovbiagele B.
        • Smith S.C.
        • Spencer C.C.
        • Stafford R.S.
        • Taler S.J.
        • Thomas R.J.
        • Williams K.A.
        • Hundley J.
        2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults a report of the American College of Cardiology/American Heart Association Task Force on Clinical practice guidelines.
        in: Hypertension. Vol. 71. Lippincott Williams and Wilkins, 2018: E13-E115https://doi.org/10.1161/HYP.0000000000000065 (Issue 6)
        • Wischnewski M.
        • Schutter D.J.L.G.
        Efficacy and time course of theta burst stimulation in healthy humans.
        Brain Stimul. 2015; 8: 685-692https://doi.org/10.1016/j.brs.2015.03.004
        • Zachary I.
        Neuroprotective role of vascular endothelial growth factor: signalling mechanisms, biological function, and therapeutic potential.
        Neurosignals. 2005; 14: 207-221https://doi.org/10.1159/000088637
        • Zhang N.
        • Xing M.
        • Wang Y.
        • Tao H.
        • Cheng Y.
        Repetitive transcranial magnetic stimulation enhances spatial learning and synaptic plasticity via the VEGF and BDNF-NMDAR pathways in a rat model of vascular dementia.
        Neuroscience. 2015; 311: 284-291https://doi.org/10.1016/j.neuroscience.2015.10.038