Advertisement

Autonomic nervous system and arrhythmias in structural heart disease

Published:September 24, 2022DOI:https://doi.org/10.1016/j.autneu.2022.103037

      Abstract

      The autonomic nervous system functions in a fine-tuned manner to dynamically modulate cardiac function during normal physiological state. Autonomic dysregulation in cardiac disease states such as myocardial infarction and heart failure alters this fine balance, which in turn promotes disease progression and arrhythmogenesis. Neuromodulatory interventions that aim to restore this balance at distinct levels of the cardiac neuraxis thus have been shown to be effective in the treatment of arrhythmias. This review first describes the anatomy of the cardiac autonomic nervous system and the pathological changes that occur with neural remodeling in the setting of scar and cardiomyopathy, followed by therapeutic interventions for neuraxial modulation of arrhythmias such as atrial fibrillation and ventricular tachyarrhythmias.

      Graphical abstract

      Keywords

      Abbreviations:

      AF (Atrial fibrillation), ANS (Autonomic nervous system), CPVT (Catecholaminergic polymorphic ventricular tachycardia), CSD (Cardiac sympathetic denervation), ERP (Effective refractory period), GP (Ganglionated plexuses), HF (Heart failure), ICD (Implantable cardioverter-defibrillator), MI (Myocardial infarction), NPY (Neuropeptide Y), PVI (Pulmonary vein isolation), RDN (Renal denervation), SCS (Spinal cord stimulation), SG (Stelllate ganglia), TEA (Thoracic epidural anesthesia), VNS (Vagal nerve stimulation), VT (Ventricular tachyarrhythmias)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Autonomic Neuroscience: Basic and Clinical
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ajijola O.A.
        • Lellouche N.
        • Bourke T.
        • Tung R.
        • Ahn S.
        • Mahajan A.
        • Shivkumar K.
        Bilateral cardiac sympathetic denervation for the management of electrical storm.
        J. Am. Coll. Cardiol. 2012; 59: 91-92
        • Ajijola O.A.
        • Yagishita D.
        • Reddy N.K.
        • Yamakawa K.
        • Vaseghi M.
        • Downs A.M.
        • Hoover D.B.
        • Ardell J.L.
        • Shivkumar K.
        Remodeling of stellate ganglion neurons after spatially targeted myocardial infarction: neuropeptide and morphologic changes.
        Heart Rhythm. 2015; 12: 1027-1035
        • Ajijola O.A.
        • Hoover D.B.
        • Simerly T.M.
        • Brown T.C.
        • Yanagawa J.
        • Biniwale R.M.
        • Lee J.M.
        • Sadeghi A.
        • Khanlou N.
        • Ardell J.L.
        • Shivkumar K.
        Inflammation, oxidative stress, and glial cell activation characterize stellate ganglia from humans with electrical storm.
        JCI Insight. 2017; : 2
        • Ajijola O.A.
        • Chatterjee N.A.
        • Gonzales M.J.
        • Gornbein J.
        • Liu K.
        • Li D.
        • Paterson D.J.
        • Shivkumar K.
        • Singh J.P.
        • Herring N.
        Coronary sinus neuropeptide Y levels and adverse outcomes in patients with stable chronic heart failure.
        JAMA Cardiol. 2020; 5: 318-325
        • Amoni M.
        • Claus P.
        • Dries E.
        • Nagaraju C.
        • de Buck S.
        • Vandenberk B.
        • Ingelaere S.
        • Vermoortele D.
        • Roderick H.L.
        • Sipido K.R.
        • Willems R.
        Discrete sites of frequent premature ventricular complexes cluster within the infarct border zone and coincide with high frequency of delayed afterdepolarizations under adrenergic stimulation.
        Heart Rhythm. 2021; 18: 1976-1987
        • Andreas M.
        • Arzl P.
        • Mitterbauer A.
        • Ballarini N.M.
        • Kainz F.M.
        • Kocher A.
        • Laufer G.
        • Wolzt M.
        Electrical stimulation of the greater auricular nerve to reduce postoperative atrial fibrillation.
        Circ. Arrhythm. Electrophysiol. 2019; 12e007711
        • Ardell J.L.
        • Cardinal R.
        • Beaumont E.
        • Vermeulen M.
        • Smith F.M.
        • Andrew Armour J.
        Chronic spinal cord stimulation modifies intrinsic cardiac synaptic efficacy in the suppression of atrial fibrillation.
        Auton. Neurosci. 2014; 186: 38-44
        • Armaganijan L.V.
        • Staico R.
        • Moreira D.A.
        • Lopes R.D.
        • Medeiros P.T.
        • Habib R.
        • Melo Neto J.
        • Katz M.
        • Armaganijan D.
        • Sousa A.G.
        • Mahfoud F.
        • Abizaid A.
        6-Month outcomes in patients with implantable cardioverter-defibrillators undergoing renal sympathetic denervation for the treatment of refractory ventricular arrhythmias.
        JACC Cardiovasc. Interv. 2015; 8: 984-990
        • Assis F.R.
        • Sharma A.
        • Shah R.
        • Akhtar T.
        • Adari S.
        • Calkins H.
        • Ha J.S.
        • Mandal K.
        • Tandri H.
        Long-term outcomes of bilateral cardiac sympathetic denervation for refractory ventricular tachycardia.
        JACC Clin. Electrophysiol. 2021; 7: 463-470
        • Atti V.
        • Turagam M.K.
        • Garg J.
        • Lakkireddy D.
        Renal sympathetic denervation improves clinical outcomes in patients undergoing catheter ablation for atrial fibrillation and history of hypertension: a meta-analysis.
        J. Cardiovasc. Electrophysiol. 2019; 30: 702-708
        • Berger W.R.
        • Neefs J.
        • van den Berg N.W.E.
        • Krul S.P.J.
        • van Praag E.M.
        • Piersma F.R.
        • de Jong J.
        • van Boven W.P.
        • Driessen A.H.G.
        • de Groot J.R.
        Additional ganglion plexus ablation during thoracoscopic surgical ablation of advanced atrial fibrillation: intermediate follow-up of the AFACT study.
        JACC Clin. Electrophysiol. 2019; 5: 343-353
        • Bourke T.
        • Vaseghi M.
        • Michowitz Y.
        • Sankhla V.
        • Shah M.
        • Swapna N.
        • Boyle N.G.
        • Mahajan A.
        • Narasimhan C.
        • Lokhandwala Y.
        • Shivkumar K.
        Neuraxial modulation for refractory ventricular arrhythmias: value of thoracic epidural anesthesia and surgical left cardiac sympathetic denervation.
        Circulation. 2010; 121: 2255-2262
        • Bradfield J.S.
        • Vaseghi M.
        • Shivkumar K.
        Renal denervation for refractory ventricular arrhythmias.
        Trends Cardiovasc. Med. 2014; 24: 206-213
        • Bradfield J.S.
        • Hayase J.
        • Liu K.
        • Moriarty J.
        • Kee S.T.
        • Do D.
        • Ajijola O.A.
        • Vaseghi M.
        • Gima J.
        • Sorg J.
        • Cote S.
        • Pavez G.
        • Buch E.
        • Khakpour H.
        • Krokhaleva Y.
        • Macias C.
        • Fujimura O.
        • Boyle N.G.
        • Shivkumar K.
        Renal denervation as adjunctive therapy to cardiac sympathetic denervation for ablation refractory ventricular tachycardia.
        Heart Rhythm. 2020; 17: 220-227
        • Bundgaard J.S.
        • Jacobsen P.K.
        • Grand J.
        • Lindholm M.G.
        • Hassager C.
        • Pehrson S.
        • Kjaergaard J.
        • Bundgaard H.
        Deep sedation as temporary bridge to definitive treatment of ventricular arrhythmia storm.
        Eur. Heart J. Acute Cardiovasc. Care. 2020; 9: 657-664
        • Calvillo L.
        • Vanoli E.
        • Andreoli E.
        • Besana A.
        • Omodeo E.
        • Gnecchi M.
        • Zerbi P.
        • Vago G.
        • Busca G.
        • Schwartz P.J.
        Vagal stimulation, through its nicotinic action, limits infarct size and the inflammatory response to myocardial ischemia and reperfusion.
        J. Cardiovasc. Pharmacol. 2011; 58: 500-507
        • Cao J.M.
        • Fishbein M.C.
        • Han J.B.
        • Lai W.W.
        • Lai A.C.
        • Wu T.J.
        • Czer L.
        • Wolf P.L.
        • Denton T.A.
        • Shintaku I.P.
        • Chen P.S.
        • Chen L.S.
        Relationship between regional cardiac hyperinnervation and ventricular arrhythmia.
        Circulation. 2000; 101: 1960-1969
        • Cardinal R.
        • Page P.
        • Vermeulen M.
        • Bouchard C.
        • Ardell J.L.
        • Foreman R.D.
        • Armour J.A.
        Spinal cord stimulation suppresses bradycardias and atrial tachyarrhythmias induced by mediastinal nerve stimulation in dogs.
        Am. J. Phys. Regul. Integr. Comp. Phys. 2006; 291: R1369-R1375
        • Carpenter A.
        • Frontera A.
        • Bond R.
        • Duncan E.
        • Thomas G.
        Vagal atrial fibrillation: what is it and should we treat it?.
        Int. J. Cardiol. 2015; 201: 415-421
        • Chen P.S.
        • Chen L.S.
        • Fishbein M.C.
        • Lin S.F.
        • Nattel S.
        Role of the autonomic nervous system in atrial fibrillation: pathophysiology and therapy.
        Circ. Res. 2014; 114: 1500-1515
        • Chen S.
        • Kiuchi M.G.
        • Yin Y.
        • Liu S.
        • Schratter A.
        • Acou W.J.
        • Meyer C.
        • Purerfellner H.
        • Chun K.R.J.
        • Schmidt B.
        Synergy of pulmonary vein isolation and catheter renal denervation in atrial fibrillation complicated with uncontrolled hypertension: mapping the renal sympathetic nerve and pulmonary vein (the pulmonary vein isolation plus renal denervation strategy)?.
        J. Cardiovasc. Electrophysiol. 2019; 30: 658-667
        • Chinda K.
        • Tsai W.C.
        • Chan Y.H.
        • Lin A.Y.
        • Patel J.
        • Zhao Y.
        • Tan A.Y.
        • Shen M.J.
        • Lin H.
        • Shen C.
        • Chattipakorn N.
        • Rubart-Von Der Lohe M.
        • Chen L.S.
        • Fishbein M.C.
        • Lin S.F.
        • Chen Z.
        • Chen P.S.
        Intermittent left cervical vagal nerve stimulation damages the stellate ganglia and reduces the ventricular rate during sustained atrial fibrillation in ambulatory dogs.
        Heart Rhythm. 2016; 13: 771-780
        • Cohn W.E.
        • Gregoric I.D.
        • Radovancevic B.
        • Wolf R.K.
        • Frazier O.H.
        Atrial fibrillation after cardiac transplantation: experience in 498 consecutive cases.
        Ann. Thorac. Surg. 2008; 85: 56-58
        • Connors C.W.
        • Craig W.Y.
        • Buchanan S.A.
        • Poltak J.M.
        • Gagnon J.B.
        • Curry C.S.
        Efficacy and efficiency of perioperative stellate ganglion blocks in cardiac surgery: a pilot study.
        J. Cardiothorac. Vasc. Anesth. 2018; 32: e28-e30
        • Cuculi F.
        • Herring N.
        • de Caterina A.R.
        • Banning A.P.
        • Prendergast B.D.
        • Forfar J.C.
        • Choudhury R.P.
        • Channon K.M.
        • Kharbanda R.K.
        Relationship of plasma neuropeptide Y with angiographic, electrocardiographic and coronary physiology indices of reperfusion during ST elevation myocardial infarction.
        Heart. 2013; 99: 1198-1203
        • De Ferrari G.M.
        • Dusi V.
        • Spazzolini C.
        • Bos J.M.
        • Abrams D.J.
        • Berul C.I.
        • Crotti L.
        • Davis A.M.
        • Eldar M.
        • Kharlap M.
        • Khoury A.
        • Krahn A.D.
        • Leenhardt A.
        • Moir C.R.
        • Odero A.
        • Olde Nordkamp L.
        • Paul T.
        • Roses I.N.F.
        • Shkolnikova M.
        • Till J.
        • Wilde A.A.
        • Ackerman M.J.
        • Schwartz P.J.
        Clinical management of catecholaminergic polymorphic ventricular tachycardia: the role of left cardiac sympathetic denervation.
        Circulation. 2015; 131: 2185-2193
        • Dizon J.M.
        • Chen K.
        • Bacchetta M.
        • Argenziano M.
        • Mancini D.
        • Biviano A.
        • Sonett J.
        • Garan H.
        A comparison of atrial arrhythmias after heart or double-lung transplantation at a single center: insights into the mechanism of post-operative atrial fibrillation.
        J. Am. Coll. Cardiol. 2009; 54: 2043-2048
        • Do D.H.
        • Bradfield J.
        • Ajijola O.A.
        • Vaseghi M.
        • Le J.
        • Rahman S.
        • Mahajan A.
        • Nogami A.
        • Boyle N.G.
        • Shivkumar K.
        Thoracic epidural anesthesia can be effective for the short-term Management of Ventricular Tachycardia Storm.
        J. Am. Heart Assoc. 2017; 6
        • Driessen A.H.G.
        • Berger W.R.
        • Krul S.P.J.
        • Van Den Berg N.W.E.
        • Neefs J.
        • Piersma F.R.
        • Chan Pin Yin D.
        • De Jong J.
        • Van Boven W.P.
        • De Groot J.R.
        Ganglion plexus ablation in advanced atrial fibrillation: the AFACT study.
        J. Am. Coll. Cardiol. 2016; 68: 1155-1165
        • Du X.J.
        • Cox H.S.
        • Dart A.M.
        • Esler M.D.
        Sympathetic activation triggers ventricular arrhythmias in rat heart with chronic infarction and failure.
        Cardiovasc. Res. 1999; 43: 919-929
        • Dusi V.
        • Gornbein J.
        • Do D.H.
        • Sorg J.M.
        • Khakpour H.
        • Krokhaleva Y.
        • Ajijola O.A.
        • Macias C.
        • Bradfield J.S.
        • Buch E.
        • Fujimura O.A.
        • Boyle N.G.
        • Yanagawa J.
        • Lee J.M.
        • Shivkumar K.
        • Vaseghi M.
        Arrhythmic risk profile and outcomes of patients undergoing cardiac sympathetic denervation for recurrent monomorphic ventricular tachycardia after ablation.
        J. Am. Heart Assoc. 2021; 10e018371
        • Evranos B.
        • Canpolat U.
        • Kocyigit D.
        • Coteli C.
        • Yorgun H.
        • Aytemir K.
        Role of adjuvant renal sympathetic denervation in the treatment of ventricular arrhythmias.
        Am. J. Cardiol. 2016; 118: 1207-1210
        • de Ferrari G.M.
        • Sanzo A.
        • Bertoletti A.
        • Specchia G.
        • Vanoli E.
        • Schwartz P.J.
        Baroreflex sensitivity predicts long-term cardiovascular mortality after myocardial infarction even in patients with preserved left ventricular function.
        J. Am. Coll. Cardiol. 2007; 50: 2285-2290
        • de Ferrari G.M.
        • Stolen C.
        • Tuinenburg A.E.
        • Wright D.J.
        • Brugada J.
        • Butter C.
        • Klein H.
        • Neuzil P.
        • Botman C.
        • Castel M.A.
        • D'Onofrio A.
        • de Borst G.J.
        • Solomon S.
        • Stein K.M.
        • Schubert B.
        • Stalsberg K.
        • Wold N.
        • Ruble S.
        • Zannad F.
        Long-term vagal stimulation for heart failure: eighteen month results from the NEural cardiac TherApy foR heart failure (NECTAR-HF) trial.
        Int. J. Cardiol. 2017; 244: 229-234
        • Feyz L.
        • Theuns D.A.
        • Bhagwandien R.
        • Strachinaru M.
        • Kardys I.
        • van Mieghem N.M.
        • Daemen J.
        Atrial fibrillation reduction by renal sympathetic denervation: 12 months' results of the AFFORD study.
        Clin. Res. Cardiol. 2019; 108: 634-642
        • Forouzanfar T.
        • van Kleef M.
        • Weber W.E.
        Radiofrequency lesions of the stellate ganglion in chronic pain syndromes: retrospective analysis of clinical efficacy in 86 patients.
        Clin. J. Pain. 2000; 16: 164-168
        • Fudim M.
        • Qadri Y.J.
        • Waldron N.H.
        • Boortz-Marx R.L.
        • Ganesh A.
        • Patel C.B.
        • Podgoreanu M.V.
        • Sun A.Y.
        • Milano C.A.
        • Tong B.C.
        • Harpole Jr., D.H.
        • Mathew J.P.
        • Piccini J.P.
        Stellate ganglion blockade for the treatment of refractory ventricular arrhythmias.
        JACC Clin. Electrophysiol. 2020; 6: 562-571
        • Gallone G.
        • Baldetti L.
        • Tzanis G.
        • Gramegna M.
        • Latib A.
        • Colombo A.
        • Henry T.D.
        • Giannini F.
        Refractory angina: from pathophysiology to new therapeutic nonpharmacological technologies.
        JACC Cardiovasc. Interv. 2020; 13: 1-19
        • Gofeld M.
        • Bhatia A.
        • Abbas S.
        • Ganapathy S.
        • Johnson M.
        Development and validation of a new technique for ultrasound-guided stellate ganglion block.
        Reg. Anesth. Pain Med. 2009; 34: 475-479
        • Gold M.R.
        • van Veldhuisen D.J.
        • Hauptman P.J.
        • Borggrefe M.
        • Kubo S.H.
        • Lieberman R.A.
        • Milasinovic G.
        • Berman B.J.
        • Djordjevic S.
        • Neelagaru S.
        • Schwartz P.J.
        • Starling R.C.
        • Mann D.L.
        Vagus nerve stimulation for the treatment of heart failure: the INOVATE-HF trial.
        J. Am. Coll. Cardiol. 2016; 68: 149-158
        • Han F.T.
        • Kasirajan V.
        • Kowalski M.
        • Kiser R.
        • Wolfe L.
        • Kalahasty G.
        • Shepard R.K.
        • Wood M.A.
        • Ellenbogen K.A.
        Results of a minimally invasive surgical pulmonary vein isolation and ganglionic plexi ablation for atrial fibrillation: single-center experience with 12-month follow-up.
        Circ. Arrhythm. Electrophysiol. 2009; 2: 370-377
        • Han S.
        • Kobayashi K.
        • Joung B.
        • Piccirillo G.
        • Maruyama M.
        • Vinters H.V.
        • March K.
        • Lin S.F.
        • Shen C.
        • Fishbein M.C.
        • Chen P.S.
        • Chen L.S.
        Electroanatomic remodeling of the left stellate ganglion after myocardial infarction.
        J. Am. Coll. Cardiol. 2012; 59: 954-961
        • Hanna P.
        • Rajendran P.S.
        • Ajijola O.A.
        • Vaseghi M.
        • Andrew Armour J.
        • Ardell J.L.
        • Shivkumar K.
        Cardiac neuroanatomy - imaging nerves to define functional control.
        Auton. Neurosci. 2017; 207: 48-58
        • Hanna P.
        • Shivkumar K.
        • Ardell J.L.
        Calming the nervous heart: autonomic therapies in heart failure.
        Card. Fail. Rev. 2018; 4: 92-98
        • Hanna P.
        • Buch E.
        • Stavrakis S.
        • Meyer C.
        • Tompkins J.D.
        • Ardell J.L.
        • Shivkumar K.
        Neuroscientific therapies for atrial fibrillation.
        Cardiovasc. Res. 2021; 117: 1732-1745
        • Herring N.
        • Cranley J.
        • Lokale M.N.
        • Li D.
        • Shanks J.
        • Alston E.N.
        • Girard B.M.
        • Carter E.
        • Parsons R.L.
        • Habecker B.A.
        • Paterson D.J.
        The cardiac sympathetic co-transmitter galanin reduces acetylcholine release and vagal bradycardia: implications for neural control of cardiac excitability.
        J. Mol. Cell. Cardiol. 2012; 52: 667-676
        • Herring N.
        • Tapoulal N.
        • Kalla M.
        • Ye X.
        • Borysova L.
        • Lee R.
        • Dall'Armellina E.
        • Stanley C.
        • Ascione R.
        • Lu C.J.
        • Banning A.P.
        • Choudhury R.P.
        • Neubauer S.
        • Dora K.
        • Kharbanda R.K.
        • Channon K.M.
        • Oxford Acute Myocardial Infarction S.
        Neuropeptide-Y causes coronary microvascular constriction and is associated with reduced ejection fraction following ST-elevation myocardial infarction.
        Eur. Heart J. 2019; 40: 1920-1929
        • Hoang J.D.
        • Salavatian S.
        • Yamaguchi N.
        • Swid M.A.
        • David H.
        • Vaseghi M.
        Cardiac sympathetic activation circumvents high-dose beta blocker therapy in part through release of neuropeptide Y.
        JCI Insight. 2020; : 5
        • Inoue H.
        • Zipes D.P.
        Time course of denervation of efferent sympathetic and vagal nerves after occlusion of the coronary artery in the canine heart.
        Circ. Res. 1988; 62: 1111-1120
        • Janig W.
        Neurocardiology: a neurobiologist's perspective.
        J. Physiol. 2016; 594: 3955-3962
        • Jiang Y.
        • Po S.S.
        • Amil F.
        • Dasari T.W.
        Non-invasive low-level tragus stimulation in cardiovascular diseases.
        Arrhythm Electrophysiol Rev. 2020; 9: 40-46
        • Kalla M.
        • Hao G.
        • Tapoulal N.
        • Tomek J.
        • Liu K.
        • Woodward L.
        • Oxford Acute Myocardial Infarction S.
        • Dall'armellina E.
        • Banning A.P.
        • Choudhury R.P.
        • Neubauer S.
        • Kharbanda R.K.
        • Channon K.M.
        • Ajijola O.A.
        • Shivkumar K.
        • Paterson D.J.
        • Herring N.
        The cardiac sympathetic co-transmitter neuropeptide Y is pro-arrhythmic following ST-elevation myocardial infarction despite beta-blockade.
        Eur. Heart J. 2020; 41: 2168-2179
        • Kammerling J.J.
        • Green F.J.
        • Watanabe A.M.
        • Inoue H.
        • Barber M.J.
        • Henry D.P.
        • Zipes D.P.
        Denervation supersensitivity of refractoriness in noninfarcted areas apical to transmural myocardial infarction.
        Circulation. 1987; 76: 383-393
        • Kandzari D.E.
        • Bhatt D.L.
        • Sobotka P.A.
        • O'Neill W.W.
        • Esler M.
        • Flack J.M.
        • Katzen B.T.
        • Leon M.B.
        • Massaro J.M.
        • Negoita M.
        • Oparil S.
        • Rocha-Singh K.
        • Straley C.
        • Townsend R.R.
        • Bakris G.
        Catheter-based renal denervation for resistant hypertension: rationale and design of the SYMPLICITY HTN-3 trial.
        Clin. Cardiol. 2012; 35: 528-535
        • Katritsis D.G.
        • Giazitzoglou E.
        • Zografos T.
        • Pokushalov E.
        • Po S.S.
        • Camm A.J.
        Rapid pulmonary vein isolation combined with autonomic ganglia modification: a randomized study.
        Heart Rhythm. 2011; 8: 672-678
        • Katritsis D.G.
        • Pokushalov E.
        • Romanov A.
        • Giazitzoglou E.
        • Siontis G.C.
        • Po S.S.
        • Camm A.J.
        • Ioannidis J.P.
        Autonomic denervation added to pulmonary vein isolation for paroxysmal atrial fibrillation: a randomized clinical trial.
        J. Am. Coll. Cardiol. 2013; 62: 2318-2325
        • Kawashima T.
        Anatomy of the cardiac nervous system with clinical and comparative morphological implications.
        Anat. Sci. Int. 2011; 86: 30-49
        • Khan M.
        • Kalahasti V.
        • Rajagopal V.
        • Khaykin Y.
        • Wazni O.
        • Almahameed S.
        • Zuzek R.
        • Shah T.
        • Lakkireddy D.
        • Saliba W.
        • Schweikert R.
        • Cummings J.
        • Martin D.O.
        • Natale A.
        Incidence of atrial fibrillation in heart transplant patients: long-term follow-up.
        J. Cardiovasc. Electrophysiol. 2006; 17: 827-831
        • Kim M.Y.
        • Coyle C.
        • Tomlinson D.R.
        • Sikkel M.B.
        • Sohaib A.
        • Luther V.
        • Leong K.M.
        • Malcolme-Lawes L.
        • Low B.
        • Sandler B.
        • Lim E.
        • Todd M.
        • Fudge M.
        • Wright I.J.
        • Koa-Wing M.
        • Ng F.S.
        • Qureshi N.A.
        • Whinnett Z.I.
        • Peters N.S.
        • Newcomb D.
        • Wood C.
        • Dhillon G.
        • Hunter R.J.
        • Lim P.B.
        • Linton N.W.F.
        • Kanagaratnam P.
        Ectopy-triggering ganglionated plexuses ablation to prevent atrial fibrillation: GANGLIA-AF study.
        Heart Rhythm. 2022; 19: 516-524
        • Kleiger R.E.
        • Miller J.P.
        • Bigger Jr., J.T.
        • Moss A.J.
        Decreased heart rate variability and its association with increased mortality after acute myocardial infarction.
        Am. J. Cardiol. 1987; 59: 256-262
        • Kumar R.
        • Woo M.A.
        • Macey P.M.
        • Fonarow G.C.
        • Hamilton M.A.
        • Harper R.M.
        Brain axonal and myelin evaluation in heart failure.
        J. Neurol. Sci. 2011; 307: 106-113
        • Kumar R.
        • Yadav S.K.
        • Palomares J.A.
        • Park B.
        • Joshi S.H.
        • Ogren J.A.
        • Macey P.M.
        • Fonarow G.C.
        • Harper R.M.
        • Woo M.A.
        Reduced regional brain cortical thickness in patients with heart failure.
        PLoS One. 2015; 10e0126595
        • Leftheriotis D.
        • Flevari P.
        • Kossyvakis C.
        • Katsaras D.
        • Batistaki C.
        • Arvaniti C.
        • Giannopoulos G.
        • Deftereos S.
        • Kostopanagiotou G.
        • Lekakis J.
        Acute effects of unilateral temporary stellate ganglion block on human atrial electrophysiological properties and atrial fibrillation inducibility.
        Heart Rhythm. 2016; 13: 2111-2117
        • Li S.
        • Scherlag B.J.
        • Yu L.
        • Sheng X.
        • Zhang Y.
        • Ali R.
        • Dong Y.
        • Ghias M.
        • Po S.S.
        Low-level vagosympathetic stimulation: a paradox and potential new modality for the treatment of focal atrial fibrillation.
        Circ. Arrhythm. Electrophysiol. 2009; 2: 645-651
        • Liao K.
        • Yu L.
        • Yang K.
        • Saren G.
        • Wang S.
        • Huang B.
        • Jiang H.
        Low-level carotid baroreceptor stimulation suppresses ventricular arrhythmias during acute ischemia.
        PLoS One. 2014; 9e109313
        • Linz D.
        • Hohl M.
        • Khoshkish S.
        • Mahfoud F.
        • Ukena C.
        • Neuberger H.R.
        • Wirth K.
        • Bohm M.
        Low-level but not high-level baroreceptor stimulation inhibits atrial fibrillation in a pig model of sleep apnea.
        J. Cardiovasc. Electrophysiol. 2016; 27: 1086-1092
        • Lopshire J.C.
        • Zhou X.
        • Dusa C.
        • Ueyama T.
        • Rosenberger J.
        • Courtney N.
        • Ujhelyi M.
        • Mullen T.
        • Das M.
        • Zipes D.P.
        Spinal cord stimulation improves ventricular function and reduces ventricular arrhythmias in a canine postinfarction heart failure model.
        Circulation. 2009; 120: 286-294
        • Lymperopoulos A.
        • Rengo G.
        • Koch W.J.
        Adrenergic nervous system in heart failure: pathophysiology and therapy.
        Circ. Res. 2013; 113: 739-753
        • Magruder J.T.
        • Plum W.
        • Crawford T.C.
        • Grimm J.C.
        • Borja M.C.
        • Berger R.D.
        • Tandri H.
        • Calkins H.
        • Cameron D.E.
        • Mandal K.
        Incidence of late atrial fibrillation in bilateral lung versus heart transplants.
        Asian Cardiovasc. Thorac. Ann. 2016; 24: 772-778
        • Mahajan A.
        • Moore J.
        • Cesario D.A.
        • Shivkumar K.
        Use of thoracic epidural anesthesia for management of electrical storm: a case report.
        Heart Rhythm. 2005; 2: 1359-1362
        • Meissner A.
        • Eckardt L.
        • Kirchhof P.
        • Weber T.
        • Rolf N.
        • Breithardt G.
        • van Aken H.
        • Haverkamp W.
        Effects of thoracic epidural anesthesia with and without autonomic nervous system blockade on cardiac monophasic action potentials and effective refractoriness in awake dogs.
        Anesthesiology. 2001; 95 (discussion 6A): 132-138
        • Meng L.
        • Tseng C.H.
        • Shivkumar K.
        • Ajijola O.
        Efficacy of stellate ganglion blockade in managing electrical storm: a systematic review.
        JACC Clin. Electrophysiol. 2017; 3: 942-949
        • Milby A.H.
        • Halpern C.H.
        • Baltuch G.H.
        Vagus nerve stimulation for epilepsy and depression.
        Neurotherapeutics. 2008; 5: 75-85
        • Moss A.J.
        • McDonald J.
        Unilateral cervicothoracic sympathetic ganglionectomy for the treatment of long QT interval syndrome.
        N. Engl. J. Med. 1971; 285: 903-904
        • Murtaza G.
        • Sharma S.P.
        • Akella K.
        • Turagam M.K.
        • Rocca D.G.D.
        • Lakkireddy D.
        • Gopinathannair R.
        Role of cardiac sympathetic denervation in ventricular tachycardia: a meta-analysis.
        Pacing Clin. Electrophysiol. 2020; 43: 828-837
        • Naoum J.J.
        • Arbid E.J.
        Spinal cord stimulation for chronic limb ischemia.
        Methodist Debakey Cardiovasc. J. 2013; 9: 99-102
        • Noheria A.
        • Patel S.M.
        • Mirzoyev S.
        • Madhavan M.
        • Friedman P.A.
        • Packer D.L.
        • Daly R.C.
        • Kushwaha S.S.
        • Edwards B.S.
        • Asirvatham S.J.
        Decreased postoperative atrial fibrillation following cardiac transplantation: the significance of autonomic denervation.
        Pacing Clin. Electrophysiol. 2013; 36: 741-747
        • Ogawa M.
        • Zhou S.
        • Tan A.Y.
        • Song J.
        • Gholmieh G.
        • Fishbein M.C.
        • Luo H.
        • Siegel R.J.
        • Karagueuzian H.S.
        • Chen L.S.
        • Lin S.F.
        • Chen P.S.
        Left stellate ganglion and vagal nerve activity and cardiac arrhythmias in ambulatory dogs with pacing-induced congestive heart failure.
        J. Am. Coll. Cardiol. 2007; 50: 335-343
        • Oka T.
        • Ozawa Y.
        • Ohkubo Y.
        Thoracic epidural bupivacaine attenuates supraventricular tachyarrhythmias after pulmonary resection.
        Anesth. Analg. 2001; 93 (1st contents page): 253-259
        • Olausson K.
        • Magnusdottir H.
        • Lurje L.
        • Wennerblom B.
        • Emanuelsson H.
        • Ricksten S.E.
        Anti-ischemic and anti-anginal effects of thoracic epidural anesthesia versus those of conventional medical therapy in the treatment of severe refractory unstable angina pectoris.
        Circulation. 1997; 96: 2178-2182
        • Olivas A.
        • Gardner R.T.
        • Wang L.
        • Ripplinger C.M.
        • Woodward W.R.
        • Habecker B.A.
        Myocardial infarction causes transient cholinergic transdifferentiation of cardiac sympathetic nerves via gp130.
        J. Neurosci. 2016; 36: 479-488
        • Opthof T.
        • Misier A.R.
        • Coronel R.
        • Vermeulen J.T.
        • Verberne H.J.
        • Frank R.G.
        • Moulijn A.C.
        • Van Capelle F.J.
        • Janse M.J.
        Dispersion of refractoriness in canine ventricular myocardium. Effects of sympathetic stimulation.
        Circ. Res. 1991; 68: 1204-1215
        • Opthof T.
        • Coronel R.
        • Vermeulen J.T.
        • Verberne H.J.
        • van Capelle F.J.
        • Janse M.J.
        Dispersion of refractoriness in normal and ischaemic canine ventricle: effects of sympathetic stimulation.
        Cardiovasc. Res. 1993; 27: 1954-1960
        • Premchand R.K.
        • Sharma K.
        • Mittal S.
        • Monteiro R.
        • Dixit S.
        • Libbus I.
        • Dicarlo L.A.
        • Ardell J.L.
        • Rector T.S.
        • Amurthur B.
        • Kenknight B.H.
        • Anand I.S.
        Autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure: results of the ANTHEM-HF trial.
        J. Card. Fail. 2014; 20: 808-816
        • Priori S.G.
        • Mantica M.
        • Schwartz P.J.
        Delayed afterdepolarizations elicited in vivo by left stellate ganglion stimulation.
        Circulation. 1988; 78: 178-185
        • Romanov A.
        • Pokushalov E.
        • Ponomarev D.
        • Bayramova S.
        • Shabanov V.
        • Losik D.
        • Stenin I.
        • Elesin D.
        • Mikheenko I.
        • Strelnikov A.
        • Sergeevichev D.
        • Kozlov B.
        • Po S.S.
        • Steinberg J.S.
        Long-term suppression of atrial fibrillation by botulinum toxin injection into epicardial fat pads in patients undergoing cardiac surgery: three-year follow-up of a randomized study.
        Heart Rhythm. 2019; 16: 172-177
        • Roston T.M.
        • Vinocur J.M.
        • Maginot K.R.
        • Mohammed S.
        • Salerno J.C.
        • Etheridge S.P.
        • Cohen M.
        • Hamilton R.M.
        • Pflaumer A.
        • Kanter R.J.
        • Potts J.E.
        • Lapage M.J.
        • Collins K.K.
        • Gebauer R.A.
        • Temple J.D.
        • Batra A.S.
        • Erickson C.
        • Miszczak-Knecht M.
        • Kubus P.
        • Bar-Cohen Y.
        • Kantoch M.
        • Thomas V.C.
        • Hessling G.
        • Anderson C.
        • Young M.L.
        • Cabrera Ortega M.
        • Lau Y.R.
        • Johnsrude C.L.
        • Fournier A.
        • Kannankeril P.J.
        • Sanatani S.
        Catecholaminergic polymorphic ventricular tachycardia in children: analysis of therapeutic strategies and outcomes from an international multicenter registry.
        Circ. Arrhythm. Electrophysiol. 2015; 8: 633-642
        • Schwartz P.J.
        Cardiac sympathetic denervation to prevent life-threatening arrhythmias.
        Nat. Rev. Cardiol. 2014; 11: 346-353
        • Schwartz P.J.
        • Priori S.G.
        • Cerrone M.
        • Spazzolini C.
        • Odero A.
        • Napolitano C.
        • Bloise R.
        • de Ferrari G.M.
        • Klersy C.
        • Moss A.J.
        • Zareba W.
        • Robinson J.L.
        • Hall W.J.
        • Brink P.A.
        • Toivonen L.
        • Epstein A.E.
        • Li C.
        • Hu D.
        Left cardiac sympathetic denervation in the management of high-risk patients affected by the long-QT syndrome.
        Circulation. 2004; 109: 1826-1833
        • Shen M.J.
        • Shinohara T.
        • Park H.W.
        • Frick K.
        • Ice D.S.
        • Choi E.K.
        • Han S.
        • Maruyama M.
        • Sharma R.
        • Shen C.
        • Fishbein M.C.
        • Chen L.S.
        • Lopshire J.C.
        • Zipes D.P.
        • Lin S.F.
        • Chen P.S.
        Continuous low-level vagus nerve stimulation reduces stellate ganglion nerve activity and paroxysmal atrial tachyarrhythmias in ambulatory canines.
        Circulation. 2011; 123: 2204-2212
        • Sheng X.
        • Scherlag B.J.
        • Yu L.
        • Li S.
        • Ali R.
        • Zhang Y.
        • Fu G.
        • Nakagawa H.
        • Jackman W.M.
        • Lazzara R.
        • Po S.S.
        Prevention and reversal of atrial fibrillation inducibility and autonomic remodeling by low-level vagosympathetic nerve stimulation.
        J. Am. Coll. Cardiol. 2011; 57: 563-571
        • Shivkumar K.
        • Ajijola O.A.
        • Anand I.
        • Armour J.A.
        • Chen P.S.
        • Esler M.
        • de Ferrari G.M.
        • Fishbein M.C.
        • Goldberger J.J.
        • Harper R.M.
        • Joyner M.J.
        • Khalsa S.S.
        • Kumar R.
        • Lane R.
        • Mahajan A.
        • Po S.
        • Schwartz P.J.
        • Somers V.K.
        • Valderrabano M.
        • Vaseghi M.
        • Zipes D.P.
        Clinical neurocardiology defining the value of neuroscience-based cardiovascular therapeutics.
        J. Physiol. 2016; 594: 3911-3954
        • Spuck S.
        • Tronnier V.
        • Orosz I.
        • Schonweiler R.
        • Sepehrnia A.
        • Nowak G.
        • Sperner J.
        Operative and technical complications of vagus nerve stimulator implantation.
        Neurosurgery. 2010; 67: 489-494
        • Stavrakis S.
        • Humphrey M.B.
        • Scherlag B.
        • Iftikhar O.
        • Parwani P.
        • Abbas M.
        • Filiberti A.
        • Fleming C.
        • Hu Y.
        • Garabelli P.
        • McUnu A.
        • Peyton M.
        • Po S.S.
        Low-level vagus nerve stimulation suppresses post-operative atrial fibrillation and inflammation: a randomized study.
        JACC Clin. Electrophysiol. 2017; 3: 929-938
        • Stavrakis S.
        • Stoner J.A.
        • Humphrey M.B.
        • Morris L.
        • Filiberti A.
        • Reynolds J.C.
        • Elkholey K.
        • Javed I.
        • Twidale N.
        • Riha P.
        • Varahan S.
        • Scherlag B.J.
        • Jackman W.M.
        • Dasari T.W.
        • Po S.S.
        TREAT AF (Transcutaneous electrical vagus nerve stimulation to suppress atrial Fibrillation): a randomized clinical trial.
        JACC Clin. Electrophysiol. 2020; 6: 282-291
        • Steinberg J.S.
        • Shabanov V.
        • Ponomarev D.
        • Losik D.
        • Ivanickiy E.
        • Kropotkin E.
        • Polyakov K.
        • Ptaszynski P.
        • Keweloh B.
        • Yao C.J.
        • Pokushalov E.A.
        • Romanov A.B.
        Effect of renal denervation and catheter ablation vs catheter ablation alone on atrial fibrillation recurrence among patients with paroxysmal atrial fibrillation and hypertension: the ERADICATE-AF randomized clinical trial.
        JAMA. 2020; 323: 248-255
        • Tapa S.
        • Wang L.
        • Francis Stuart S.D.
        • Wang Z.
        • Jiang Y.
        • Habecker B.A.
        • Ripplinger C.M.
        Adrenergic supersensitivity and impaired neural control of cardiac electrophysiology following regional cardiac sympathetic nerve loss.
        Sci. Rep. 2020; 10: 18801
        • Tomek J.
        • Hao G.
        • Tomkova M.
        • Lewis A.
        • Carr C.
        • Paterson D.J.
        • Rodriguez B.
        • Bub G.
        • Herring N.
        Beta-adrenergic receptor stimulation and alternans in the border zone of a healed infarct: an ex vivo study and computational investigation of arrhythmogenesis.
        Front. Physiol. 2019; 10: 350
        • Vanoli E.
        • De Ferrari G.M.
        • Stramba-Badiale M.
        • Hull Jr., S.S.
        • Foreman R.D.
        • Schwartz P.J.
        Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction.
        Circ. Res. 1991; 68: 1471-1481
        • Vaseghi M.
        • Boyle N.G.
        • Kedia R.
        • Patel J.K.
        • Cesario D.A.
        • Wiener I.
        • Kobashigawa J.A.
        • Shivkumar K.
        Supraventricular tachycardia after orthotopic cardiac transplantation.
        J. Am. Coll. Cardiol. 2008; 51: 2241-2249
        • Vaseghi M.
        • Lux R.L.
        • Mahajan A.
        • Shivkumar K.
        Sympathetic stimulation increases dispersion of repolarization in humans with myocardial infarction.
        Am. J. Physiol. Heart Circ. Physiol. 2012; 302: H1838-H1846
        • Vaseghi M.
        • Yamakawa K.
        • Sinha A.
        • So E.L.
        • Zhou W.
        • Ajijola O.A.
        • Lux R.L.
        • Laks M.
        • Shivkumar K.
        • Mahajan A.
        Modulation of regional dispersion of repolarization and T-peak to T-end interval by the right and left stellate ganglia.
        Am. J. Physiol. Heart Circ. Physiol. 2013; 305: H1020-H1030
        • Vaseghi M.
        • Gima J.
        • Kanaan C.
        • Ajijola O.A.
        • Marmureanu A.
        • Mahajan A.
        • Shivkumar K.
        Cardiac sympathetic denervation in patients with refractory ventricular arrhythmias or electrical storm: intermediate and long-term follow-up.
        Heart Rhythm. 2014; 11: 360-366
        • Vaseghi M.
        • Barwad P.
        • Malavassi Corrales F.J.
        • Tandri H.
        • Mathuria N.
        • Shah R.
        • Sorg J.M.
        • Gima J.
        • Mandal K.
        • Saenz Morales L.C.
        • Lokhandwala Y.
        • Shivkumar K.
        Cardiac sympathetic denervation for refractory ventricular arrhythmias.
        J. Am. Coll. Cardiol. 2017; 69: 3070-3080
        • Vaseghi M.
        • Salavatian S.
        • Rajendran P.S.
        • Yagishita D.
        • Woodward W.R.
        • Hamon D.
        • Yamakawa K.
        • Irie T.
        • Habecker B.A.
        • Shivkumar K.
        Parasympathetic dysfunction and antiarrhythmic effect of vagal nerve stimulation following myocardial infarction.
        JCI Insight. 2017; : 2
        • Verma A.
        • Marrouche N.F.
        • Schweikert R.A.
        • Saliba W.
        • Wazni O.
        • Cummings J.
        • Abdul-Karim A.
        • Bhargava M.
        • Burkhardt J.D.
        • Kilicaslan F.
        • Martin D.O.
        • Natale A.
        Relationship between successful ablation sites and the scar border zone defined by substrate mapping for ventricular tachycardia post-myocardial infarction.
        J. Cardiovasc. Electrophysiol. 2005; 16: 465-471
        • Wang Z.
        • Yu L.
        • Wang S.
        • Huang B.
        • Liao K.
        • Saren G.
        • Tan T.
        • Jiang H.
        Chronic intermittent low-level transcutaneous electrical stimulation of auricular branch of vagus nerve improves left ventricular remodeling in conscious dogs with healed myocardial infarction.
        Circ Heart Fail. 2014; 7: 1014-1021
        • Wang L.
        • Olivas A.
        • Francis Stuart S.D.
        • Tapa S.
        • Blake M.R.
        • Woodward W.R.
        • Habecker B.A.
        • Ripplinger C.M.
        Cardiac sympathetic nerve transdifferentiation reduces action potential heterogeneity after myocardial infarction.
        Am. J. Physiol. Heart Circ. Physiol. 2020; 318 (H558-H565)
        • Waxman M.B.
        • Wald R.W.
        Termination of ventricular tachycardia by an increase in cardiac vagal drive.
        Circulation. 1977; 56: 385-391
        • West T.C.
        • Landa J.F.
        Minimal mass required for induction of a sustained arrhythmia in isolated atrial segments.
        Am. J. Phys. 1962; 202: 232-236
        • Wilde A.A.
        • Bhuiyan Z.A.
        • Crotti L.
        • Facchini M.
        • de Ferrari G.M.
        • Paul T.
        • Ferrandi C.
        • Koolbergen D.R.
        • Odero A.
        • Schwartz P.J.
        Left cardiac sympathetic denervation for catecholaminergic polymorphic ventricular tachycardia.
        N. Engl. J. Med. 2008; 358: 2024-2029
        • Woo M.A.
        • Macey P.M.
        • Keens P.T.
        • Kumar R.
        • Fonarow G.C.
        • Hamilton M.A.
        • Harper R.M.
        Functional abnormalities in brain areas that mediate autonomic nervous system control in advanced heart failure.
        J. Card. Fail. 2005; 11: 437-446
        • Woo M.A.
        • Kumar R.
        • Macey P.M.
        • Fonarow G.C.
        • Harper R.M.
        Brain injury in autonomic, emotional, and cognitive regulatory areas in patients with heart failure.
        J. Card. Fail. 2009; 15: 214-223
        • Yamaguchi N.
        • Yamakawa K.
        • Rajendran P.S.
        • Takamiya T.
        • Vaseghi M.
        Antiarrhythmic effects of vagal nerve stimulation after cardiac sympathetic denervation in the setting of chronic myocardial infarction.
        Heart Rhythm. 2018; 15: 1214-1222
        • Yu L.
        • Scherlag B.J.
        • Li S.
        • Sheng X.
        • Lu Z.
        • Nakagawa H.
        • Zhang Y.
        • Jackman W.M.
        • Lazzara R.
        • Jiang H.
        • Po S.S.
        Low-level vagosympathetic nerve stimulation inhibits atrial fibrillation inducibility: direct evidence by neural recordings from intrinsic cardiac ganglia.
        J. Cardiovasc. Electrophysiol. 2011; 22: 455-463
        • Yu L.
        • Scherlag B.J.
        • Li S.
        • Fan Y.
        • Dyer J.
        • Male S.
        • Varma V.
        • Sha Y.
        • Stavrakis S.
        • Po S.S.
        Low-level transcutaneous electrical stimulation of the auricular branch of the vagus nerve: a noninvasive approach to treat the initial phase of atrial fibrillation.
        Heart Rhythm. 2013; 10: 428-435
        • Yu L.
        • Wang S.
        • Zhou X.
        • Wang Z.
        • Huang B.
        • Liao K.
        • Saren G.
        • Chen M.
        • Po S.S.
        • Jiang H.
        Chronic intermittent low-level stimulation of tragus reduces cardiac autonomic remodeling and ventricular arrhythmia inducibility in a post-infarction canine model.
        JACC Clin. Electrophysiol. 2016; 2: 330-339
        • Yu L.
        • Huang B.
        • Po S.S.
        • Tan T.
        • Wang M.
        • Zhou L.
        • Meng G.
        • Yuan S.
        • Zhou X.
        • Li X.
        • Wang Z.
        • Wang S.
        • Jiang H.
        Low-level tragus stimulation for the treatment of ischemia and reperfusion injury in patients with ST-segment elevation myocardial infarction: a proof-of-concept study.
        JACC Cardiovasc. Interv. 2017; 10: 1511-1520
        • Zhang J.
        • Zhou S.
        • Xu G.
        Carotid baroreceptor stimulation: a potential solution for resistant hypertension.
        Interv. Neurol. 2014; 2: 118-122
        • Zhang T.C.
        • Janik J.J.
        • Grill W.M.
        Mechanisms and models of spinal cord stimulation for the treatment of neuropathic pain.
        Brain Res. 2014; 1569: 19-31
        • Zhao M.
        • He X.
        • Bi X.Y.
        • Yu X.J.
        • Gil Wier W.
        • Zang W.J.
        Vagal stimulation triggers peripheral vascular protection through the cholinergic anti-inflammatory pathway in a rat model of myocardial ischemia/reperfusion.
        Basic Res. Cardiol. 2013; 108: 345
        • Zhu C.
        • Hanna P.
        • Rajendran P.S.
        • Shivkumar K.
        Neuromodulation for ventricular tachycardia and atrial fibrillation: a clinical scenario-based review.
        JACC Clin. Electrophysiol. 2019; 5: 881-896
        • Zile M.R.
        • Lindenfeld J.
        • Weaver F.A.
        • Zannad F.
        • Galle E.
        • Rogers T.
        • Abraham W.T.
        Baroreflex activation therapy in patients with heart failure with reduced ejection fraction.
        J. Am. Coll. Cardiol. 2020; 76: 1-13
        • Zipes D.P.
        • Neuzil P.
        • Theres H.
        • Caraway D.
        • Mann D.L.
        • Mannheimer C.
        • van Buren P.
        • Linde C.
        • Linderoth B.
        • Kueffer F.
        • Sarazin S.A.
        • Dejongste M.J.L.
        • Investigators D.-H.T.
        Determining the feasibility of spinal cord neuromodulation for the treatment of chronic systolic heart failure: the DEFEAT-HF study.
        JACC Heart Fail. 2016; 4: 129-136