Advertisement

The multiple roles of dopamine receptor activation in the modulation of gastrointestinal motility and mucosal function

  • Rosa Serio
    Correspondence
    Corresponding author.
    Affiliations
    Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
    Search for articles by this author
  • Maria Grazia Zizzo
    Affiliations
    Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy

    ATeN (Advanced Technologies Network) Center, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
    Search for articles by this author
Published:November 07, 2022DOI:https://doi.org/10.1016/j.autneu.2022.103041

      Highlights

      • Dopamine (DA) is a catecholamine neurotransmitter with potential role in physiology/physiopathology of the intestinal tract.
      • DA is able to modulate intestinal functions via activation of peripherally located receptors, classified in two main classes, D1-like and D2-like receptors.
      • DA receptor activation induces mainly inhibitory effects on the intestinal contractility, in animal models and in humans.
      • DA plays an important role in the protection of the gastrointestinal mucosal barrier.
      • Decreased DA level upon the onset of intestinal inflammation, would favour the development of colitis.

      Abstract

      Dopamine (DA) is a catecholamine regulatory molecule with potential role in physiology and physiopathology of the intestinal tract. Various cellular sources of DA have been indicated as enteric neurons, immune cells, intestinal flora and gastrointestinal epithelium. Moreover, DA is produced by nutritional tyrosine. All the five DA receptors, actually described, are present throughout the gut. Current knowledge of DA in this area is reviewed, focusing on gastrointestinal function in health and during inflammation. Research on animal models and humans are reported. A major obstacle to understanding the physiologic and/or pharmacological roles of enteric DA is represented by the multiplicity of receptors involved in the responses together with many signalling pathways related to each receptor subtype. It is mandatory to map precisely the distributions of DA receptors, to determine the relevance of a receptor in a specific location in order to explore novel therapies directed to dopaminergic targets that may be useful in the control of intestinal inflammation.

      Graphical abstract

      Abbreviations:

      DA (dopamine), DAT (dopamine transporter), D1-D5 (dopamine receptors), GI (gastrointestinal), IBD (inflammatory bowel diseases), L-DOPA (L-3,4-dihydroxyphenylalanine), TH (tyrosine hydroxylase)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Autonomic Neuroscience: Basic and Clinical
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Adorini Luciano
        • Sinigaglia Francesco
        Pathogenesis and immunotherapy of autoimmune diseases.
        Immunol. Today. 1997; 18: 209-211https://doi.org/10.1016/S0167-5699(97)01031-1
        • Altschuler E.
        Gastric helicobacter pylori infection as a cause of idiopathic Parkinson disease and non-arteric anterior optic ischemic neuropathy.
        Med. Hypotheses. 1996; 47: 413-414https://doi.org/10.1016/S0306-9877(96)90223-6
        • Anlauf Martin
        • Schäfer Martin K.H.
        • Eiden Lee
        • Weihe Eberhard
        Chemical coding of the human gastrointestinal nervous system: cholinergic, VIPergic, and catecholaminergic phenotypes.
        J. Comp. Neurol. 2003; 459: 90-111https://doi.org/10.1002/CNE.10599
        • Arreola Rodrigo
        • Alvarez-Herrera Samantha
        • Pérez-Sánchez Gilberto
        • Becerril-Villanueva Enrique
        • Cruz-Fuentes Carlos
        • Flores-Gutierrez Enrique Octavio
        • Garcés-Alvarez María Eugenia
        • Cruz-Aguilera Dora Luz De La
        • Medina-Rivero Emilio
        • Hurtado-Alvarado Gabriela
        • Quintero-Fabián Saray
        • Pavón Lenin
        Immunomodulatory effects mediated by dopamine.
        J. Immunol. Res. 2016; 2016https://doi.org/10.1155/2016/3160486
        • Auteri Michelangelo
        • Zizzo Maria Grazia
        • Amato Antonella
        • Serio Rosa
        Dopamine induces inhibitory effects on the circular muscle contractility of mouse distal colon via D1- and D2-like receptors.
        J. Physiol. Biochem. 2017; 73: 395-404https://doi.org/10.1007/s13105-017-0566-0
        • Beaulieu Jean Martin
        • Espinoza Stefano
        • Gainetdinov Raul R.
        Dopamine receptors – IUPHAR review 13.
        Br. J. Pharmacol. 2015; 172: 1https://doi.org/10.1111/BPH.12906
        • Bucolo Claudio
        • Leggio Gian Marco
        • Drago Filippo
        • Salomone Salvatore
        Dopamine outside the brain: the eye, cardiovascular system and endocrine pancreas.
        Pharmacol. Ther. 2019; 203107392https://doi.org/10.1016/J.PHARMTHERA.2019.07.003
        • Campos Javier
        • Pacheco Rodrigo
        Involvement of dopaminergic signaling in the cross talk between the renin-angiotensin system and inflammation.
        Semin. Immunopathol. 2020; 42: 681-696https://doi.org/10.1007/S00281-020-00819-8
        • Carlsson A.
        A paradigm shift in brain research.
        Science. 2001; 294: 1021-1024https://doi.org/10.1126/SCIENCE.1066969
        • Carlsson Arvid
        • Lindqvist Margit
        • Magnusson Tor
        3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists.
        Nature. 1957; 180: 1200https://doi.org/10.1038/1801200A0
        • Cerantola Silvia
        • Caputi Valentina
        • Contarini Gabriella
        • Mereu Maddalena
        • Bertazzo Antonella
        • Bosi Annalisa
        • Banfi Davide
        • Mantini Dante
        • Giaroni Cristina
        • Giron Maria Cecilia
        Dopamine transporter genetic reduction induces morpho-functional changes in the enteric nervous system.
        Biomedicines. 2021; 9https://doi.org/10.3390/BIOMEDICINES9050465/S1
        • Contreras Francisco
        • Prado Carolina
        • González Hugo
        • Franz Dafne
        • Osorio-Barrios Francisco
        • Osorio Fabiola
        • Ugalde Valentina
        • Lopez Ernesto
        • Elgueta Daniela
        • Figueroa Alicia
        • Lladser Alvaro
        • Pacheco Rodrigo
        Dopamine receptor D3 signaling on CD4+ T cells favors Th1- and Th17-mediated immunity.
        J. Immunol. 2016; 196: 4143-4149https://doi.org/10.4049/JIMMUNOL.1502420
        • Desai Jagruti K.
        • Goyal Ramesh K.
        • Parmar Narayan S.
        Characterization of dopamine receptor subtypes involved in experimentally induced gastric and duodenal ulcers in rats.
        J. Pharm. Pharmacol. 1999; 51: 187-192https://doi.org/10.1211/0022357991772123
        • Dorofeyev A.E.
        • Vasilenko I.V.
        • Rassokhina O.A.
        • Kondratiuk R.B.
        Mucosal barrier in ulcerative colitis and Crohn's disease.
        Gastroenterol. Res. Pract. 2013; 2013https://doi.org/10.1155/2013/431231
        • Ehringer H.
        • Hornykiewicz O.
        Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system.
        Klin. Wochenschr. 1960; 38: 1236-1239https://doi.org/10.1007/BF01485901
        • Eisenhofer Graeme
        • Aneman Ånders
        • Friberg Peter
        • Hooper Douglas
        • Fåndriks Lars
        • Lonroth Hans
        • Hunyady Béla
        • Mezey Eva
        Substantial production of dopamine in the human gastrointestinal tract.
        J.Clin.Endocrinol.Metab. 1997; 82: 3864-3871https://doi.org/10.1210/JCEM.82.11.4339
        • Elgueta Daniela
        • Aymerich María S.
        • Contreras Francisco
        • Montoya Andro
        • Celorrio Marta
        • Rojo-Bustamante Estefanía
        • Riquelme Eduardo
        • González Hugo
        • Vásquez Mónica
        • Franco Rafael
        • Pacheco Rodrigo
        Pharmacologic antagonism of dopamine receptor D3 attenuates neurodegeneration and motor impairment in a mouse model of Parkinson's disease.
        Neuropharmacology. 2017; 113: 110-123https://doi.org/10.1016/J.NEUROPHARM.2016.09.028
        • Feng Yifei
        • Yan Lu.
        Immunomodulatory effects of dopamine in inflammatory diseases.
        Front. Immunol. 2021; 12https://doi.org/10.3389/FIMMU.2021.663102
        • Feng Xiao Yan
        • Li Yun
        • Li Li Sheng
        • Li Xiao Feng
        • Zheng Li Fei
        • Zhang Xiao Li
        • Fan Rui Fang
        • Song Jin
        • Hong Feng
        • Zhang Yue
        • Zhu Jin Xia
        Dopamine D1 receptors mediate dopamine-induced duodenal epithelial ion transport in rats.
        Transl.Res. 2013; 161: 486-494https://doi.org/10.1016/J.TRSL.2012.12.002
        • Feng X.Y.
        • Zhang D.N.
        • Wang Y.A.
        • Fan R.F.
        • Hong F.
        • Zhang Y.
        • Li Y.
        • Zhu J.X.
        Dopamine enhances duodenal epithelial permeability via the dopamine D 5 receptor in rodent.
        Acta Physiol. 2017; 220: 113-123https://doi.org/10.1111/APHA.12806
        • Feng Xiao Yan
        • Yan Jing Ting
        • Li Guang Wen
        • Liu Jing Hua
        • Fan Rui Fang
        • Li Shi Chao
        • Zheng Li Fei
        • Zhang Yue
        • Zhu Jin Xia
        Source of dopamine in gastric juice and luminal dopamine-induced duodenal bicarbonate secretion via apical dopamine D 2 receptors.
        Br. J. Pharmacol. 2020; 177: 3258-3272https://doi.org/10.1111/BPH.15047
        • Flemström Gunnar
        • Säfsten Bengt
        Role of dopamine and other stimuli of mucosal bicarbonate secretion in duodenal protection.
        Dig. Dis. Sci. 1994; 39: 1839-1842https://doi.org/10.1007/BF02088112
        • Franco Rafael
        • Reyes-Resina Irene
        • Navarro Gemma
        Dopamine in health and disease: much more than a neurotransmitter.
        Biomedicines. 2021; 9: 1-13https://doi.org/10.3390/BIOMEDICINES9020109
        • Garrido-Gil Pablo
        • Dominguez-Meijide Antonio
        • Moratalla Rosario
        • Guerra Maria J.
        • Labandeira-Garcia Jose L.
        Aging-related dysregulation in enteric dopamine and angiotensin system interactions: implications for gastrointestinal dysfunction in the elderly.
        Oncotarget. 2018; 9: 10834https://doi.org/10.18632/ONCOTARGET.24330
        • Glavin G.B.
        Activity of selective dopamine DA1 and DA2 agonists and antagonists on experimental gastric lesions and gastric acid secretion.
        J. Pharmacol. Exp. Ther. 1989; 251
        • González-Arancibia Camila
        • Urrutia-Piñones Jocelyn
        • Illanes-González Javiera
        • Martinez-Pinto Jonathan
        • Sotomayor-Zárate Ramón
        • Julio-Pieper Marcela
        • Bravo Javier A.
        Do your gut microbes affect your brain dopamine?.
        Psychopharmacology. 2019; 236: 1611-1622https://doi.org/10.1007/S00213-019-05265-5
        • Hernandez Daniel E.
        • Adcock Jimmie W.
        • Orlando Roy C.
        • Patrick Kennerly S.
        • Nemeroff Charles B.
        • Prange Arthur J.
        Prevention of stress-induced gastric ulcers by dopamine agonists in the rat.
        Life Sci. 1984; 35: 2453-2458https://doi.org/10.1016/0024-3205(84)90454-5
        • Jansson G.
        • Lisander B.
        On adrenergic influence on gastric motility in chronically vagotomized gats.
        Acta Physiol. Scand. 1969; 76: 463-471https://doi.org/10.1111/J.1748-1716.1969.TB04493.X
        • Kaise Mitsuru
        • Echizen Hirotoshi
        • Ishizaki Takashi
        Dopaminergic control of gastric mucosal blood flow in humans. A study with endoscopic laser doppler flowmetry coupled with gastric submucosal drug injection.
        Dig. Dis. Sci. 1993; 38: 1169-1174https://doi.org/10.1007/BF01296063
      1. Kandelet al., n.d.Kandel, Eric R., John Koester, Sarah Mack, and Steven Siegelbaum. n.d. ‘Principles of Neural Science’. 2021.

        • Kaneko Kentaro
        • Iwasaki Masashi
        • Yoshikawa Masaaki
        • Ohinata Kousaku
        Orally administered soymorphins, soy-derived opioid peptides, suppress feeding and intestinal transit via gut Μ1-receptor coupled to 5-HT1A, D2, and GABAB systems.
        Am. J. Physiol. Gastrointest. Liver Physiol. 2010; 299: 799-805https://doi.org/10.1152/AJPGI.00081.2010/SUPPL_FILE/TABLES1.PDF
        • Kashyap Purna
        • Micci Maria Adelaide
        • Pasricha Sarina
        • Pasricha Pankaj Jay
        The D2/D3 agonist PD128907 (R-(+)-trans-3,4a,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano[4,3-b]-1,4-oxazin-9-Ol) inhibits stimulated pyloric relaxation and spontaneous gastric emptying.
        Dig. Dis. Sci. 2009; 54: 57-62https://doi.org/10.1007/S10620-008-0335-6
        • Kawano Masaaki
        • Takagi Rie
        • Kaneko Atsushi
        • Matsushita Sho
        Berberine is a dopamine D1- and D2-like receptor antagonist and ameliorates experimentally induced colitis by suppressing innate and adaptive immune responses.
        J. Neuroimmunol. 2015; 289: 43-55https://doi.org/10.1016/J.JNEUROIM.2015.10.001
        • Kim Jeong Hee
        • Choe Yi Seul
        • Cumming Paul
        • Son Young Don
        • Kim Hang Keun
        • Joo Yo Han
        • Kim Jong Hoon
        Relationship of self-transcendence traits with in vivo dopamine D2/3 receptor availability and functional connectivity: an [18 F]Fallypride PET and FMRI study.
        Synapse. 2019; 73https://doi.org/10.1002/SYN.22121
        • Kirschstein Timo
        • Dammann Fabian
        • Klostermann Jenny
        • Rehberg Mirko
        • Tokay Tursonjan
        • Schubert Rudolf
        • Köhling Rüdiger
        Dopamine induces contraction in the proximal, but relaxation in the distal rat isolated small intestine.
        Neurosci. Lett. 2009; 465: 21-26https://doi.org/10.1016/J.NEULET.2009.08.080
        • Kobayashi M.
        • Iaccarino C.
        • Saiardi A.
        • Heidt V.
        • Bozzi Y.
        • Picetti R.
        • Vitale C.
        • Westphal H.
        • Drago J.
        • Borrelli E.
        Simultaneous absence of dopamine D1 and D2 receptor-mediated signaling is lethal in mice.
        Proc. Natl. Acad. Sci. U S A. 2004; 101: 11465-11470https://doi.org/10.1073/pnas.0402028101
        • Korner Judith
        • Cline Gary W.
        • Slifstein Mark
        • Barba Pasquale
        • Rayat Gina R.
        • Febres Gerardo
        • Leibel Rudolph L.
        • Maffei Antonella
        • Harris Paul E.
        A role for foregut tyrosine metabolism in glucose tolerance.
        Mol.Metab. 2019; 23: 37-50https://doi.org/10.1016/J.MOLMET.2019.02.008
        • Kurnik-łucka Magdalena
        • Pasieka Paweł
        • Łączak Patrycja
        • Wojnarski Marcin
        • Jurczyk Michał
        • Gil Krzysztof
        Gastrointestinal dopamine in inflammatory bowel diseases: a systematic review.
        Int. J. Mol. Sci. 2021; 22https://doi.org/10.3390/ijms222312932
        • Lanfranchi Giorgio Assuero
        • Marzio Leonardo
        • Cortini Claudio
        • Osset Eduardo Moreno
        Motor effect of dopamine on human sigmoid colon. Evidence for specific receptors.
        Am. J. Dig. Dis. 1978; 23: 257-263https://doi.org/10.1007/BF01072326
        • Levite M.
        Dopamine and T cells: dopamine receptors and potent effects on T cells, dopamine production in T cells, and abnormalities in the dopaminergic system in T cells in autoimmune, neurological and psychiatric diseases.
        Acta Physiol. 2016; 216: 42-89https://doi.org/10.1111/APHA.12476
        • Li Z.S.
        • Pham T.D.
        • Tamir H.
        • Chen J.J.
        • Gershon M.D.
        Enteric dopaminergic neurons: definition, developmental lineage, and effects of extrinsic denervation.
        J. Neurosci. 2004; 24: 1330-1339https://doi.org/10.1523/JNEUROSCI.3982-03.2004
        • Li Yun
        • Zhang Yue
        • Zhang Xiao Li
        • Feng Xiao Yan
        • Liu Chen Zhe
        • Zhang Xiu Neng
        • Quan Zhu Sheng
        • Yan Jing Ting
        • Zhu Jin Xia
        Dopamine promotes colonic mucus secretion through dopamine D 5 receptor in rats.
        Am.J.Physiol. Cell Physiol. 2019; 316: C393-C403https://doi.org/10.1152/AJPCELL.00261.2017
        • Lim Hyun Chul
        • Kim Young Gyun
        • Lim Jung Hyun
        • Kim Hee Sun
        • Park Hyojln
        Effect of itopride hydrochloride on the ileal and colonic motility in guinea pig in vitro.
        Yonsei Med. J. 2008; 49: 472https://doi.org/10.3349/YMJ.2008.49.3.472
        • Liu Xin Bo
        • Liu Jun Feng
        Expression of dopamine receptors in human lower esophageal sphincter.
        J. Gastroenterol. Hepatol. 2012; 27: 945-950https://doi.org/10.1111/J.1440-1746.2012.07100.X
        • Lombardi D.M.
        • Grous M.
        • Fine C.F.
        • Barone F.C.
        • Fowler P.J.
        • Phyall W.B.
        • Rush J.A.
        • Ormsbee H.S.
        DA1 receptor mediates dopamine-induced relaxation of opossum lower esophageal sphincter in vitro.
        Gastroenterology. 1986; 91: 533-539https://doi.org/10.5555/URI:PII:0016508586906190
        • Magro F.
        • Vieira-Coelho M.A.
        • Fraga S.
        • Serräo M.P.
        • Tavarela Veloso F.
        • Ribeiro Tomé
        • Soares-da-Silva P.
        Impaired synthesis or cellular storage of norepinephrine, dopamine, and 5-hydroxytryptamine in human inflammatory bowel disease.
        Dig. Dis. Sci. 2002; 47: 216-224https://doi.org/10.1023/A:1013256629600
        • Magro F.
        • Fraga S.
        • Ribeiro T.
        • Soares-da-Silva P.
        Decreased availability of intestinal dopamine in transmural colitis may relate to inhibitory effects of interferon-gamma upon L-DOPA uptake.
        Acta Physiol. Scand. 2004; 180: 379-386https://doi.org/10.1111/J.1365-201X.2004.01260.X
        • Magro F.
        • Cunha E.
        • Araujo F.
        • Meireles E.
        • Pereira P.
        • Dinis-Ribeiro M.
        • Tavarela Veloso F.
        • Medeiros R.
        • Soares-Da-Silva P.
        Dopamine D2 receptor polymorphisms in inflammatory bowel disease and the refractory response to treatment.
        Dig. Dis. Sci. 2006; 51: 2039-2044https://doi.org/10.1007/S10620-006-9168-3
        • Martelli D.
        • Yao S.T.
        • Mckinley M.J.
        • Mcallen R.M.
        Reflex control of inflammation by sympathetic nerves, not the vagus.
        J. Physiol. 2014; 592: 1677https://doi.org/10.1113/JPHYSIOL.2013.268573
        • Mezey Éva
        • Eisenhofer Graeme
        • Hansson Stefan
        • Hunyady Béla
        • Hoffman Beth J.
        Dopamine produced by the stomach may act as a paracrine/autocrine hormone in the rat.
        Neuroendocrinology. 1998; 67: 336-348https://doi.org/10.1159/000054332
        • Mittal Rahul
        • Debs Luca H.
        • Patel Amit P.
        • Nguyen Desiree
        • Patel Kunal
        • O'Connor Gregory
        • Grati M.hamed
        • Mittal Jeenu
        • Yan Denise
        • Eshraghi Adrien A.
        • Deo Sapna K.
        • Daunert Sylvia
        • Liu Xue Zhong
        Neurotransmitters: the critical modulators regulating gut-brain axis.
        J. Cell. Physiol. 2017; 232: 2359https://doi.org/10.1002/JCP.25518
        • Miyazawa Tohru
        • Matsumoto Masahiro
        • Kato Shinichi
        • Takeuchi Koji
        Dopamine-induced protection against indomethacin-evoked intestinal lesions in rats - role of anti-intestinal motility mediated by D2 receptors.
        Med. Sci. Monit. 2003; 9: 71-77
        • Mizoguchi Atsushi
        • Mizoguchi Emiko
        • Chiba Chie
        • Spiekermann Gerburg M.
        • Tonegawa Susumu
        • Nagler-Anderson Cathryn
        • Bhan Atul K.
        Cytokine imbalance and autoantibody production in T cell receptor-alpha mutant mice with inflammatory bowel disease.
        J. Exp. Med. 1996; 183: 847-856https://doi.org/10.1084/JEM.183.3.847
        • Navarro Gemma
        • Carriba Paulina
        • Gandía Jorge
        • Ciruela Francisco
        • Casadó Vicent
        • Cortés Antoni
        • Mallol Josefa
        • Canela Enric I.
        • Lluis Carmen
        • Franco Rafael
        Detection of heteromers formed by cannabinoid CB1, dopamine D2, and adenosine A2A G-protein-coupled receptors by combining bimolecular fluorescence complementation and bioluminescence energy transfer.
        TheScientificWorldJOURNAL. 2008; 8: 1088-1097https://doi.org/10.1100/TSW.2008.136
        • Oehlers Stefan H.
        • Flores Maria Vega
        • Hall Christopher J.
        • Wang Liuyang
        • Ko Dennis C.
        • Crosier Kathryn E.
        • Crosier Philip S.
        A whole animal chemical screen approach to identify modifiers of intestinal neutrophilic inflammation.
        FEBS J. 2017; 284: 402-413https://doi.org/10.1111/FEBS.13976
        • Olson Timothy S.
        • Reuter Brian K.
        • Scott Kevin G.E.
        • Morris Margaret A.
        • Wang Xiao Ming
        • Hancock Leslie N.
        • Burcin Tracy L.
        • Cohn Steven M.
        • Ernst Peter B.
        • Cominelli Fabio
        • Meddings Jonathan B.
        • Ley Klaus
        • Pizarro Theresa T.
        The primary defect in experimental ileitis originates from a nonhematopoietic source.
        J. Exp. Med. 2006; 203: 541-552https://doi.org/10.1084/JEM.20050407
        • Pacheco Rodrigo
        • Contreras Francisco
        • Zouali Moncef
        The dopaminergic system in autoimmune diseases.
        Front. Immunol. 2014; 5https://doi.org/10.3389/FIMMU.2014.00117
        • Podolsky Daniel K.
        Inflammatory bowel disease (1).
        N. Engl. J. Med. 1991; 325: 928-937https://doi.org/10.1056/NEJM199109263251306
        • Ramos Guilherme Piovezani
        • Papadakis Konstantinos A.
        Mechanisms of disease: inflammatory bowel diseases.
        Mayo Clin. Proc. 2019; 94: 155-165https://doi.org/10.1016/J.MAYOCP.2018.09.013
        • Seeman P.
        Brain dopamine receptors.
        Pharmacol. Rev. 1980; 32: 229-313
        • Seeman Philip
        • Van Tol Hubert H.M.
        Dopamine receptor pharmacology.
        Trends Pharmacol. Sci. 1994; 15: 264-270https://doi.org/10.1016/0165-6147(94)90323-9
        • Shichijo Kazuko
        • Sakurai-Yamashita Yasuko
        • Sekine Ichiro
        • Taniyama Kohtaro
        Neuronal release of endogenous dopamine from corpus of guinea pig stomach.
        Am.J.Physiol. 1997; 273https://doi.org/10.1152/AJPGI.1997.273.5.G1044
        • Sibley David R.
        • Monsma Frederick J.
        • Shen Yong
        Molecular neurobiology of dopaminergic receptors.
        Int. Rev. Neurobiol. 1993; 35: 391-415https://doi.org/10.1016/S0074-7742(08)60573-5
        • Sigala Sandra
        • Missale Guido
        • Raddino Riccardo
        • Cestari Renzo
        • Lojacono Leonardo
        • Missale Cristina
        • Spano Pier Franco
        Opposing roles for D-1 and D-2 dopamine receptors in the regulation of lower esophageal sphincter motility in the rat.
        Life Sci. 1994; 54: 1035-1045https://doi.org/10.1016/0024-3205(94)00414-5
        • Straub R.H.
        • Wiest R.
        • Strauch U.G.
        • Härle P.
        • Schölmerich J.
        The role of the sympathetic nervous system in intestinal inflammation.
        Gut. 2006; 55: 1640-1649https://doi.org/10.1136/GUT.2006.091322
        • Szabo Sandor
        Dopamine disorder in duodenal ulceration.
        Lancet. 1979; 2: 880-882https://doi.org/10.1016/S0140-6736(79)92690-4
        • Tolstanova Ganna
        • Deng Xiaoming
        • Ahluwalia Amrita
        • Paunovic Brankica
        • Prysiazhniuk Alona
        • Ostapchenko Lyudmyla
        • Tarnawski Andrzej
        • Sandor Zsuzsanna
        • Szabo Sandor
        Role of dopamine and D2 dopamine receptor in the pathogenesis of inflammatory bowel disease.
        Dig. Dis. Sci. 2015; 60: 2963-2975https://doi.org/10.1007/S10620-015-3698-5
        • Tonini M.
        • De Ponti F.
        • Di Nucci A.
        • Crema F.
        Review article: cardiac adverse effects of gastrointestinal prokinetics.
        Aliment. Pharmacol. Ther. 1999; 13: 1585-1591https://doi.org/10.1046/J.1365-2036.1999.00655.X
        • Valenzuela J.E.
        • Dooley C.P.
        Dopamine antagonists in the upper gastrointestinal tract.
        Scand.J.Gastroenterol. Suppl. 1984; 96: 127-136
        • Vaughan Carl J.
        • Aherne Anna M.
        • Lane Eamon
        • Power Orla
        • Carey Robert M.
        • O’Connell Damian P.
        Identification and regional distribution of the dopamine D(1A) receptor in the gastrointestinal tract.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000; 279https://doi.org/10.1152/AJPREGU.2000.279.2.R599
        • Vidal Pia M.
        • Pacheco Rodrigo
        Targeting the dopaminergic system in autoimmunity.
        J. NeuroImmune Pharmacol. 2020; 15: 57-73https://doi.org/10.1007/S11481-019-09834-5/FIGURES/3
        • Walker Julia K.L.
        • Gainetdinov Raul R.
        • Mangel Allen W.
        • Caron Marc G.
        • Shetzline Michael A.
        Mice lacking the dopamine transporter display altered regulation of distal colonic motility.
        Am. J. Physiol. Gastrointest. Liver Physiol. 2000; 279https://doi.org/10.1152/AJPGI.2000.279.2.G311
        • Wall Rebecca
        • Cryan John F.
        • Paul Ross R.
        • Fitzgerald Gerald F.
        • Dinan Timothy G.
        • Stanton Catherine
        Bacterial neuroactive compounds produced by psychobiotics.
        Adv. Exp. Med. Biol. 2014; 817: 221-239https://doi.org/10.1007/978-1-4939-0897-4_10
        • Walter Gary C.
        • Phillips Robert J.
        • McAdams Jennifer L.
        • Powley Terry L.
        Individual sympathetic postganglionic neurons co-innervate myenteric ganglia and smooth muscle layers in the gastrointestinal tract of the rat.
        J. Comp. Neurol. 2016; 524: 2577https://doi.org/10.1002/CNE.23978
        • Willemze Rose A.
        • Welting Olaf
        • van Hamersveld Patricia
        • Verseijden Caroline
        • Nijhuis Laurens E.
        • Hilbers Francisca W.
        • Meijer Sybren L.
        • Heesters Balthasar A.
        • Folgering Joost H.A.
        • Darwinkel Harold
        • Blancou Philippe
        • Vervoordeldonk Margriet J.
        • Seppen Jurgen
        • Heinsbroek Sigrid E.M.
        • de Jonge Wouter J.
        Loss of intestinal sympathetic innervation elicits an innate immune driven colitis.
        Mol. Med. 2019; 25: 1https://doi.org/10.1186/S10020-018-0068-8
        • Zhang Gui Hong
        • Zhu Jin Xia
        • Xue Hong
        • Fan Jing
        • Chen Xin
        • Tsang Lai Ling
        • Chung Yiu Wa
        • Xing Ying
        • Chan Hsiao Chang
        Dopamine stimulates Cl(-) absorption coupled with HCO(3)(-) secretion in rat late distal colon.
        Eur. J. Pharmacol. 2007; 570: 188-195https://doi.org/10.1016/J.EJPHAR.2007.05.038
        • Zheng Li-Fei
        • Liu Sumei
        • Zhou Li
        • Zhang Xiao-Li
        • Xiao Yu.
        • Zhu Jin-Xia
        Dopamine and gastrointestinal motility.
        in: Dopamine in the Gut. 2021: 133-202https://doi.org/10.1007/978-981-33-6586-5_5
        • Zhi Shan Li
        • Schmauss Claudia
        • Cuenca Abigail
        • Ratcliffe Elyanne
        • Gershon Michael D.
        Physiological modulation of intestinal motility by enteric dopaminergic neurons and the D2 receptor: analysis of dopamine receptor expression, location, development, and function in wild-type and knock-out mice.
        J. Neurosci. 2006; 26: 2798-2807https://doi.org/10.1523/JNEUROSCI.4720-05.2006
        • Zizzo Maria Grazia
        • Cavallaro Giacomo
        • Auteri Michelangelo
        • Caldara Gaetano
        • Amodeo Ilaria
        • Mastropaolo Mariangela
        • Nuzzo Domenico
        • Di Carlo Marta
        • Fumagalli Monica
        • Mosca Fabio
        • Mule Flavia
        • Serio Rosa
        Postnatal development of the dopaminergic signaling involved in the modulation of intestinal motility in mice.
        Pediatr. Res. 2016; 80: 440-447https://doi.org/10.1038/pr.2016.91
        • Zizzo M.G.
        • Mule’ F.
        • Mastropaolo M.
        • Serio R.
        D1 receptors play a major role in the dopamine modulation of mouse ileum contractility.
        Pharmacol Res. 2010; 61: 371-378https://doi.org/10.1016/j.phrs.2010.01.015
        • Zizzo M.G.
        • Bellanca A.
        • Amato A.
        • Serio R.
        Opposite effects of dopamine on the mechanical activity of circular and longitudinal muscle of human colon.
        Neurogastroenterol. Motil. 2020; 32https://doi.org/10.1111/nmo.13811