Short communication| Volume 245, 103056, March 2023

Phenotyping autonomic neuropathy using principal component analysis

Published:December 09, 2022DOI:


      To identify autonomic neuropathy (AN) phenotypes, we used principal component analysis on data from participants (N = 209) who underwent standardized autonomic testing including quantitative sudomotor axon reflex testing, and heart rate and blood pressure at rest and during tilt, Valsalva, and standardized deep breathing. The analysis identified seven clusters: 1) normal, 2) hyperadrenergic features without AN, 3) mild AN with hyperadrenergic features, 4) moderate AN, 5) mild AN with hypoadrenergic features, 6) borderline AN with hypoadrenergic features, 7) mild balanced deficits across parasympathetic, sympathetic and sudomotor domains. These findings demonstrate a complex relationship between adrenergic and other aspects of autonomic function.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Autonomic Neuroscience: Basic and Clinical
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Crnošija L.
        • Krbot Skorić M.
        • Adamec I.
        • et al.
        Hemodynamic profile and heart rate variability in hyperadrenergic versus non-hyperadrenergic postural orthostatic tachycardia syndrome.
        Clin. Neurophysiol. 2016; 127 (Feb): 1639-1644
        • Cryer P.E.
        • Silverberg A.B.
        • Santiago J.V.
        • Shah S.D.
        Plasma catecholamines in diabetes: the syndromes of hypoadrenergic and hyperadrenergic postural hypotension.
        Am. J. Med. 1978; 64: 407-416
        • Ewing D.J.
        • Campbell I.W.
        • Clarke B.F.
        The natural history of diabetic autonomic neuropathy.
        Q. J. Med. 1980; 49 (Winter): 95-108
        • Ferraro M.B.
        Fuzzy k-means: history and applications.
        Econ. Stat. 2021; (2021/11/26/)
        • Freeman R.
        Chapter 6 - diabetic autonomic neuropathy.
        in: Zochodne D.W. Malik R.A. HandbClinNeurol. Elsevier, 2014: 63-79
        • Freeman R.
        • Wieling W.
        • Axelrod F.B.
        • et al.
        Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome.
        Auton. Neurosci. 2011; 161: 46-48
        • de Geus E.J.C.
        • Gianaros P.J.
        • Brindle R.C.
        • Jennings J.R.
        • Berntson G.G.
        Should heart rate variability be "corrected" for heart rate? Biological, quantitative, and interpretive considerations.
        Psychophysiology. 2019; 56 (Feb)e13287
        • Holwerda S.W.
        • Restaino R.M.
        • Manrique C.
        • Lastra G.
        • Fisher J.P.
        • Fadel P.J.
        Augmented pressor and sympathetic responses to skeletal muscle metaboreflex activation in type 2 diabetes patients.
        Am. J. Physiol. Heart Circ. Physiol. 2016; 310: H300-H309
        • Huggett R.J.
        • Scott E.M.
        • Gilbey S.G.
        • Bannister J.
        • Mackintosh A.F.
        • Mary D.A.
        Disparity of autonomic control in type 2 diabetes mellitus.
        Diabetologia. 2005; 48 (Jan): 172-179
        • Kherif F.
        • Latypova A.
        Chapter 12 - principal component analysis.
        in: Mechelli A. Vieira S. Machine Learning. Academic Press, 2020: 209-225
        • Kwon P.M.
        • Lawrence S.
        • Mueller B.R.
        • Thayer J.F.
        • Benn E.K.T.
        • Robinson-Papp J.
        Interpreting resting heart rate variability in complex populations: the role of autonomic reflexes and comorbidities.
        Clin. Auton. Res. 2022; (May 14)
        • Laursen B.
        • Hoff E.
        Person-centered and variable-centered approaches to longitudinal data.
        Merrill-Palmer Q. 2006; 52: 377-389
        • Low P.A.
        Composite autonomic scoring scale for laboratory quantification of generalized autonomic failure.
        Mayo Clin. Proc. 1993; 68 (1993/08//): 748-752
        • Malpas S.C.
        Sympathetic nervous system overactivity and its role in the development of cardiovascular disease.
        Physiol. Rev. 2010; 90 (2010/04/01): 513-557
        • Nance D.M.
        • Sanders V.M.
        Autonomic innervation and regulation of the immune system (1987–2007).
        Brain Behav. Immun. 2007; 21 (Aug): 736-745
        • Petry D.
        • de Godoy Mirian
        • Marques C.
        • Brum Marques J.L.
        Baroreflex sensitivity with different lags and random forests for staging cardiovascular autonomic neuropathy in subjects with diabetes.
        Comput. Biol. Med. Dec 2020; 127104098
        • Robinson-Papp J.
        • Sharma S.
        • Simpson D.M.
        • Morgello S.
        Autonomic dysfunction is common in HIV and associated with distal symmetric polyneuropathy.
        J. Neurovirol. 2013; 19 (2013/04//): 172-180
        • Robinson-Papp J.
        • Sharma S.K.
        • George M.C.
        • Simpson D.M.
        Assessment of autonomic symptoms in a medically complex, urban patient population.
        Clin. Auton. Res. 2017; 27 (Feb): 25-29
        • Shaffer F.
        • Ginsberg J.P.
        An overview of heart rate variability metrics and norms. Review.
        Front. Public Health. 2017; (2017-September-28): 5
        • Shoemaker J.K.
        • Klassen S.A.
        • Badrov M.B.
        • Fadel P.J.
        Fifty years of microneurography: learning the language of the peripheral sympathetic nervous system in humans.
        J. Neurophysiol. 2018; 119: 1731-1744
        • Steger A.
        • Müller A.
        • Barthel P.
        Polyscore of non-invasive cardiac risk factors.
        J. Gerontol. A. 2019; (2019-February-04): 10
        • Straznicky N.E.
        • Grima M.T.
        • Sari C.I.
        • et al.
        Neuroadrenergic dysfunction along the diabetes continuum: a comparative study in obese metabolic syndrome subjects.
        Diabetes. 2012; 61 (Oct): 2506-2516
        • Taub P.R.
        • Zadourian A.
        • Lo H.C.
        • Ormiston C.K.
        • Golshan S.
        • Hsu J.C.
        Randomized trial of ivabradine in patients with hyperadrenergic postural orthostatic tachycardia syndrome.
        J. Am. Coll. Cardiol. 2021; 77: 861-871
        • Tohmeh J.F.
        • Shah S.D.
        • Cryer P.E.
        The pathogenesis of hyperadrenergic postural hypotension in diabetic patients.
        Am. J. Med. 1979; 67: 772-778
        • Trevizani G.A.
        • Nasario-Junior O.
        • Benchimol-Barbosa P.R.
        • Silva L.P.
        • Nadal J.
        Cardiac autonomic changes in middle-aged women: identification based on principal component analysis.
        Clin. Physiol. Funct. Imaging. 2016; 36 (Jul): 269-273
        • Varadhan R.
        • Chaves P.H.M.
        • Lipsitz L.A.
        • et al.
        Frailty and impaired cardiac autonomic control: new insights from principal components aggregation of traditional heart rate variability indices.
        J. Gerontol. A. 2009; 64A: 682-687
        • Ziegler D.
        • Dannehl K.
        • Mühlen H.
        • Spüler M.
        • Fa Gries
        Prevalence of cardiovascular autonomic dysfunction assessed by spectral analysis, vector analysis, and standard tests of heart rate variation and blood pressure responses at various stages of diabetic neuropathy.
        Diabet. Med. 1992; 9 (1992/11/01/): 806-814