Advertisement
Research Article| Volume 245, 103058, March 2023

GABAergic leptin receptor-expressing neurons in the dorsomedial hypothalamus project to brown adipose tissue-related neurons in the paraventricular nucleus of mice

  • Yanyan Jiang
    Affiliations
    Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, United States of America

    Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA, United States of America
    Search for articles by this author
  • Kavon Rezai-Zadeh
    Affiliations
    Central Leptin Signaling, Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
    Search for articles by this author
  • Lucie D. Desmoulins
    Affiliations
    Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, United States of America
    Search for articles by this author
  • Heike Muenzberg
    Affiliations
    Central Leptin Signaling, Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
    Search for articles by this author
  • Andrei V. Derbenev
    Affiliations
    Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, United States of America

    Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA, United States of America
    Search for articles by this author
  • Andrea Zsombok
    Correspondence
    Corresponding author at: Department of Physiology, School of Medicine, Tulane University, 1430 Tulane Ave., 8639, New Orleans, LA 70112, United States of America.
    Affiliations
    Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, United States of America

    Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA, United States of America
    Search for articles by this author
Published:December 13, 2022DOI:https://doi.org/10.1016/j.autneu.2022.103058

      Abstract

      Brown adipose tissue (BAT) contributes to energy homeostasis via nonshivering thermogenesis. The BAT is densely innervated by the sympathetic nervous system (SNS) and activity of pre-autonomic neurons modulates the sympathetic outflow. Leptin, an adipocyte hormone, alters energy homeostasis and thermogenesis of BAT via several neuronal circuits; however, the cellular effects of leptin on interscapular BAT (iBAT)-related neurons in the hypothalamus remain to be determined. In this study, we used pseudorabies virus (PRV) to identify iBAT-related neurons in the paraventricular nucleus (PVN) of the hypothalamus and test the hypothesis that iBAT-related PVN neurons are modulated by leptin. Inoculation of iBAT with PRV in leptin receptor reporter mice (Lepr:EGFP) demonstrated that a population of iBAT-related PVN neurons expresses Lepr receptors. Our electrophysiological findings revealed that leptin application caused hyperpolarization in some of iBAT-related PVN neurons. Bath application of leptin also modulated excitatory and inhibitory neurotransmission to most of iBAT-related PVN neurons. Using channel rhodopsin assisted circuit mapping we found that GABAergic and glutamatergic Lepr-expressing neurons in the dorsomedial hypothalamus/dorsal hypothalamic area (dDMH/DHA) project to PVN neurons; however, connected iBAT-related PVN neurons receive exclusively inhibitory signals from Lepr-expressing dDMH/DHA neurons.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Autonomic Neuroscience: Basic and Clinical
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Allison M.B.
        • Myers Jr., M.G.
        20 years of leptin: connecting leptin signaling to biological function.
        J. Endocrinol. 2014; 223: T25-T35
        • Amir S.
        Stimulation of the paraventricular nucleus with glutamate activates interscapular brown adipose tissue thermogenesis in rats.
        Brain Res. 1990; 508: 152-155
        • Balthasar N.
        • Dalgaard L.T.
        • Lee C.E.
        • Yu J.
        • Funahashi H.
        • Williams T.
        • Ferreira M.
        • Tang V.
        • McGovern R.A.
        • Kenny C.D.
        • Christiansen L.M.
        • Edelstein E.
        • Choi B.
        • Boss O.
        • Aschkenasi C.
        • Zhang C.Y.
        • Mountjoy K.
        • Kishi T.
        • Elmquist J.K.
        • Lowell B.B.
        Divergence of melanocortin pathways in the control of food intake and energy expenditure.
        Cell. 2005; 123: 493-505
        • Bamshad M.
        • Song C.K.
        • Bartness T.J.
        CNS origins of the sympathetic nervous system outflow to brown adipose tissue.
        Am. J. Phys. 1999; 276: R1569-R1578
        • Bartness T.J.
        • Song C.K.
        • Demas G.E.
        SCN efferents to peripheral tissues: implications for biological rhythms.
        J. Biol. Rhythm. 2001; 16: 196-204
        • Bartness T.J.
        • Vaughan C.H.
        • Song C.K.
        Sympathetic and sensory innervation of brown adipose tissue.
        Int. J. Obes. 2010; 34: S36-S42
        • Boychuk C.R.
        • Smith B.N.
        Glutamatergic drive facilitates synaptic inhibition of dorsal vagal motor neurons after experimentally induced diabetes in mice.
        J. Neurophysiol. 2016; 116: 1498-1506
        • Buijs R.M.
        • la Fleur S.E.
        • Wortel J.
        • Van Heyningen C.
        • Zuiddam L.
        • Mettenleiter T.C.
        • Kalsbeek A.
        • Nagai K.
        • Niijima A.
        The suprachiasmatic nucleus balances sympathetic and parasympathetic output to peripheral organs through separate preautonomic neurons.
        J. Comp. Neurol. 2003; 464: 36-48
        • Cakir I.
        • Diaz-Martinez M.
        • Lining Pan P.
        • Welch E.B.
        • Patel S.
        • Ghamari-Langroudi M.
        Leptin receptor signaling in Sim1-expressing neurons regulates body temperature and adaptive thermogenesis.
        Endocrinology. 2019; 160: 863-879
        • Caldeira J.C.
        • Franci C.R.
        • Pela I.R.
        Bilateral lesion of hypothalamic paraventricular nucleus abolishes fever induced by endotoxin and bradykinin in rats.
        Ann. N. Y. Acad. Sci. 1998; 856: 294-297
        • Cano G.
        • Card J.P.
        • Sved A.F.
        Dual viral transneuronal tracing of central autonomic circuits involved in the innervation of the two kidneys in rat.
        J. Comp. Neurol. 2004; 471: 462-481
        • Cano G.
        • Passerin A.M.
        • Schiltz J.C.
        • Card J.P.
        • Morrison S.F.
        • Sved A.F.
        Anatomical substrates for the central control of sympathetic outflow to interscapular adipose tissue during cold exposure.
        J. Comp. Neurol. 2003; 460: 303-326
        • Card J.P.
        Practical considerations for the use of pseudorabies virus in transneuronal studies of neural circuitry.
        Neurosci. Biobehav. Rev. 1998; 22: 685-694
        • Card J.P.
        • Rinaman L.
        • Lynn R.B.
        • Lee B.H.
        • Meade R.P.
        • Miselis R.R.
        • Enquist L.W.
        Pseudorabies virus infection of the rat central nervous system: ultrastructural characterization of viral replication, transport, and pathogenesis.
        J. Neurosci. 1993; 13: 2515-2539
        • Cowley M.A.
        • Pronchuk N.
        • Fan W.
        • Dinulescu D.M.
        • Colmers W.F.
        • Cone R.D.
        Integration of NPY, AGRP, and melanocortin signals in the hypothalamic paraventricular nucleus: evidence of a cellular basis for the adipostat.
        Neuron. 1999; 24: 155-163
        • Davis S.F.
        • Williams K.W.
        • Xu W.
        • Glatzer N.R.
        • Smith B.N.
        Selective enhancement of synaptic inhibition by hypocretin (orexin) in rat vagal motor neurons: implications for autonomic regulation.
        J. Neurosci. 2003; 23: 3844-3854
        • Derbenev A.V.
        • Stuart T.C.
        • Smith B.N.
        Cannabinoids suppress synaptic input to neurones of the rat dorsal motor nucleus of the vagus nerve.
        J. Physiol. 2004; 559: 923-938
        • Doslikova B.
        • Tchir D.
        • McKinty A.
        • Zhu X.
        • Marks D.L.
        • Baracos V.E.
        • Colmers W.F.
        Convergent neuronal projections from paraventricular nucleus, parabrachial nucleus, and brainstem onto gastrocnemius muscle, white and brown adipose tissue in male rats.
        J. Comp. Neurol. 2019; 527: 2826-2842
        • Elmquist J.K.
        • Bjorbaek C.
        • Ahima R.S.
        • Flier J.S.
        • Saper C.B.
        Distributions of leptin receptor mRNA isoforms in the rat brain.
        J. Comp. Neurol. 1998; 395: 535-547
        • Enriori P.J.
        • Sinnayah P.
        • Simonds S.E.
        • Garcia Rudaz C.
        • Cowley M.A.
        Leptin action in the dorsomedial hypothalamus increases sympathetic tone to brown adipose tissue in spite of systemic leptin resistance.
        J. Neurosci. 2011; 31: 12189-12197
        • Foster D.O.
        • Depocas F.
        • Zaror-Behrens G.
        Unilaterality of the sympathetic innervation of each pad of rat interscapular brown adipose tissue.
        Can. J. Physiol. Pharmacol. 1982; 60: 107-113
        • Francois M.
        • Torres H.
        • Huesing C.
        • Zhang R.
        • Saurage C.
        • Lee N.
        • Qualls-Creekmore E.
        • Yu S.
        • Morrison C.D.
        • Burk D.
        • Berthoud H.R.
        • Munzberg H.
        Sympathetic innervation of the interscapular brown adipose tissue in mouse.
        Ann. N. Y. Acad. Sci. 2019; 1454: 3-13
        • Gao H.
        • Korim W.S.
        • Yao S.T.
        • Heesch C.M.
        • Derbenev A.V.
        Glycinergic neurotransmission in the rostral ventrolateral medulla controls the time course of baroreflex-mediated sympathoinhibition.
        J. Physiol. 2019; 597: 283-301
        • Gao H.
        • Miyata K.
        • Bhaskaran M.D.
        • Derbenev A.V.
        • Zsombok A.
        Transient receptor potential vanilloid type 1-dependent regulation of liver-related neurons in the paraventricular nucleus of the hypothalamus diminished in the type 1 diabetic mouse.
        Diabetes. 2012; 61: 1381-1390
        • Gao H.
        • Molinas A.J.R.
        • Miyata K.
        • Qiao X.
        • Zsombok A.
        Overactivity of liver-related neurons in the paraventricular nucleus of the hypothalamus: electrophysiological findings in db/db mice.
        J. Neurosci. 2017; 37: 11140-11150
        • Ghamari-Langroudi M.
        Electrophysiological analysis of circuits controlling energy homeostasis.
        Mol. Neurobiol. 2012; 45: 258-278
        • Ghamari-Langroudi M.
        • Srisai D.
        • Cone R.D.
        Multinodal regulation of the arcuate/paraventricular nucleus circuit by leptin.
        Proc. Natl. Acad. Sci. U. S. A. 2011; 108: 355-360
        • Ghamari-Langroudi M.
        • Vella K.R.
        • Srisai D.
        • Sugrue M.L.
        • Hollenberg A.N.
        • Cone R.D.
        Regulation of thyrotropin-releasing hormone-expressing neurons in paraventricular nucleus of the hypothalamus by signals of adiposity.
        Mol. Endocrinol. 2010; 24: 2366-2381
        • Glatzer N.R.
        • Hasney C.P.
        • Bhaskaran M.D.
        • Smith B.N.
        Synaptic and morphologic properties in vitro of premotor rat nucleus tractus solitarius neurons labeled transneuronally from the stomach.
        J. Comp. Neurol. 2003; 464: 525-539
        • Haynes W.G.
        • Morgan D.A.
        • Walsh S.A.
        • Mark A.L.
        • Sivitz W.I.
        Receptor-mediated regional sympathetic nerve activation by leptin.
        J. Clin. Invest. 1997; 100: 270-278
        • Haynes W.G.
        • Sivitz W.I.
        • Morgan D.A.
        • Walsh S.A.
        • Mark A.L.
        Sympathetic and cardiorenal actions of leptin.
        Hypertension. 1997; 30: 619-623
        • Huang Q.
        • Rivest R.
        • Richard D.
        Effects of leptin on corticotropin-releasing factor (CRF) synthesis and CRF neuron activation in the paraventricular hypothalamic nucleus of obese (ob/ob) mice.
        Endocrinology. 1998; 139: 1524-1532
        • Huesing C.
        • Zhang R.
        • Gummadi S.
        • Lee N.
        • Qualls-Creekmore E.
        • Yu S.
        • Morrison C.D.
        • Burk D.
        • Berthoud H.R.
        • Neuhuber W.
        • Munzberg H.
        Organization of sympathetic innervation of interscapular brown adipose tissue in the mouse.
        J. Comp. Neurol. 2022; 530: 1363-1378
        • Irnaten M.
        • Neff R.A.
        • Wang J.
        • Loewy A.D.
        • Mettenleiter T.C.
        • Mendelowitz D.
        Activity of cardiorespiratory networks revealed by transsynaptic virus expressing GFP.
        J. Neurophysiol. 2001; 85: 435-438
        • Jiang Y.
        • Gao H.
        • Krantz A.M.
        • Derbenev A.V.
        • Zsombok A.
        Reduced GABAergic inhibition of kidney-related PVN neurons in streptozotocin-treated type 1 diabetic mouse.
        J. Neurophysiol. 2013; 110: 2192-2202
        • Kalsbeek A.
        • Bruinstroop E.
        • Yi C.X.
        • Klieverik L.P.
        • La Fleur S.E.
        • Fliers E.
        Hypothalamic control of energy metabolism via the autonomic nervous system.
        Ann. N. Y. Acad. Sci. 2010; 1212: 114-129
        • Kong D.
        • Tong Q.
        • Ye C.
        • Koda S.
        • Fuller P.M.
        • Krashes M.J.
        • Vong L.
        • Ray R.S.
        • Olson D.P.
        • Lowell B.B.
        GABAergic RIP-cre neurons in the arcuate nucleus selectively regulate energy expenditure.
        Cell. 2012; 151: 645-657
        • Leshan R.L.
        • Bjornholm M.
        • Munzberg H.
        • Myers Jr., M.G.
        Leptin receptor signaling and action in the central nervous system.
        Obesity (Silver Spring). 2006; 14: 208S-212S
        • Luther J.A.
        • Daftary S.S.
        • Boudaba C.
        • Gould G.C.
        • Halmos K.C.
        • Tasker J.G.
        Neurosecretory and non-neurosecretory parvocellular neurones of the hypothalamic paraventricular nucleus express distinct electrophysiological properties.
        J. Neuroendocrinol. 2002; 14: 929-932
        • Luther J.A.
        • Tasker J.G.
        Voltage-gated currents distinguish parvocellular from magnocellular neurones in the rat hypothalamic paraventricular nucleus.
        J. Physiol. 2000; 523: 193-209
        • Madden C.J.
        • Morrison S.F.
        Neurons in the paraventricular nucleus of the hypothalamus inhibit sympathetic outflow to brown adipose tissue.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009; 296: R831-R843
        • Marsh A.J.
        • Fontes M.A.
        • Killinger S.
        • Pawlak D.B.
        • Polson J.W.
        • Dampney R.A.
        Cardiovascular responses evoked by leptin acting on neurons in the ventromedial and dorsomedial hypothalamus.
        Hypertension. 2003; 42: 488-493
        • McCarthy K.M.
        • Tank D.W.
        • Enquist L.W.
        Pseudorabies virus infection alters neuronal activity and connectivity in vitro.
        PLoS Pathog. 2009; 5e1000640
        • Mercer J.G.
        • Hoggard N.
        • Williams L.M.
        • Lawrence C.B.
        • Hannah L.T.
        • Trayhurn P.
        Localization of leptin receptor mRNA and the long form splice variant (Ob-Rb) in mouse hypothalamus and adjacent brain regions by in situ hybridization.
        FEBS Lett. 1996; 387: 113-116
        • Minokoshi Y.
        • Haque M.S.
        • Shimazu T.
        Microinjection of leptin into the ventromedial hypothalamus increases glucose uptake in peripheral tissues in rats.
        Diabetes. 1999; 48: 287-291
        • Molinas A.J.R.
        • Desmoulins L.D.
        • Hamling B.V.
        • Butcher S.M.
        • Anwar I.J.
        • Miyata K.
        • Enix C.L.
        • Dugas C.M.
        • Satou R.
        • Derbenev A.V.
        • Zsombok A.
        Interaction between TRPV1-expressing neurons in the hypothalamus.
        J. Neurophysiol. 2019; 121: 140-151
        • Morrison S.F.
        • Madden C.J.
        Central nervous system regulation of brown adipose tissue.
        Compr Physiol. 2014; 4: 1677-1713
        • Munzberg H.
        • Morrison C.D.
        Structure, production and signaling of leptin.
        Metabolism. 2015; 64: 13-23
        • Myers Jr., M.G.
        • Munzberg H.
        • Leinninger G.M.
        • Leshan R.L.
        The geometry of leptin action in the brain: more complicated than a simple ARC.
        Cell Metab. 2009; 9: 117-123
        • Nagamori K.
        • Ishibashi M.
        • Shiraishi T.
        • Oomura Y.
        • Sasaki K.
        Effects of leptin on hypothalamic arcuate neurons in wistar and zucker rats: an in vitro study.
        Exp. Biol. Med. (Maywood). 2003; 228: 1162-1167
        • O'Hare J.D.
        • Zsombok A.
        Brain-liver connections: role of the preautonomic PVN neurons.
        Am. J. Physiol. Endocrinol. Metab. 2016; 310: E183-E189
        • Oldfield B.J.
        • Giles M.E.
        • Watson A.
        • Anderson C.
        • Colvill L.M.
        • McKinley M.J.
        The neurochemical characterisation of hypothalamic pathways projecting polysynaptically to brown adipose tissue in the rat.
        Neuroscience. 2002; 110: 515-526
        • Otgon-Uul Z.
        • Suyama S.
        • Onodera H.
        • Yada T.
        Optogenetic activation of leptin- and glucose-regulated GABAergic neurons in dorsomedial hypothalamus promotes food intake via inhibitory synaptic transmission to paraventricular nucleus of hypothalamus.
        Mol. Metab. 2016; 5: 709-715
        • Pandit R.
        • Beerens S.
        • Adan R.A.H.
        Role of leptin in energy expenditure: the hypothalamic perspective.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017; 312: R938-r947
        • Powis J.E.
        • Bains J.S.
        • Ferguson A.V.
        Leptin depolarizes rat hypothalamic paraventricular nucleus neurons.
        Am. J. Phys. 1998; 274: R1468-R1472
        • Rezai-Zadeh K.
        • Yu S.
        • Jiang Y.
        • Laque A.
        • Schwartzenburg C.
        • Morrison C.D.
        • Derbenev A.V.
        • Zsombok A.
        • Munzberg H.
        Leptin receptor neurons in the dorsomedial hypothalamus are key regulators of energy expenditure and body weight, but not food intake.
        Mol. Metab. 2014; 3: 681-693
        • Schlaich M.
        • Straznicky N.
        • Lambert E.
        • Lambert G.
        Metabolic syndrome: a sympathetic disease?.
        Lancet Diabetes Endocrinol. 2015; 3: 148-157
        • Shi Z.
        • Pelletier N.E.
        • Wong J.
        • Li B.
        • Sdrulla A.D.
        • Madden C.J.
        • Marks D.L.
        • Brooks V.L.
        Leptin increases sympathetic nerve activity via induction of its own receptor in the paraventricular nucleus.
        elife. 2020; 9
        • Smith B.N.
        • Banfield B.W.
        • Smeraski C.A.
        • Wilcox C.L.
        • Dudek F.E.
        • Enquist L.W.
        • Pickard G.E.
        Pseudorabies virus expressing enhanced green fluorescent protein: a tool for in vitro electrophysiological analysis of transsynaptically labeled neurons in identified central nervous system circuits.
        Proc. Natl. Acad. Sci. U. S. A. 2000; 97: 9264-9269
        • Song C.K.
        • Vaughan C.H.
        • Keen-Rhinehart E.
        • Harris R.B.
        • Richard D.
        • Bartness T.J.
        Melanocortin-4 receptor mRNA expressed in sympathetic outflow neurons to brown adipose tissue: neuroanatomical and functional evidence.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008; 295: R417-R428
        • Stern J.E.
        Electrophysiological and morphological properties of pre-autonomic neurones in the rat hypothalamic paraventricular nucleus.
        J. Physiol. 2001; 537: 161-177
        • Swanson L.W.
        • Kuypers H.G.
        The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods.
        J. Comp. Neurol. 1980; 194: 555-570
        • Swanson L.W.
        • Sawchenko P.E.
        Paraventricular nucleus: a site for the integration of neuroendocrine and autonomic mechanisms.
        Neuroendocrinology. 1980; 31: 410-417
        • Swanson L.W.
        • Sawchenko P.E.
        • Wiegand S.J.
        • Price J.L.
        Separate neurons in the paraventricular nucleus project to the median eminence and to the medulla or spinal cord.
        Brain Res. 1980; 198: 190-195
        • Tasker J.G.
        • Dudek F.E.
        Electrophysiological properties of neurones in the region of the paraventricular nucleus in slices of rat hypothalamus.
        J. Physiol. 1991; 434: 271-293
        • Thorp A.A.
        • Schlaich M.P.
        Relevance of sympathetic nervous system activation in obesity and metabolic syndrome.
        J. Diabetes Res. 2015; 2015341583
        • Torres H.
        • Huesing C.
        • Burk D.H.
        • Molinas A.J.R.
        • Neuhuber W.L.
        • Berthoud H.R.
        • Munzberg H.
        • Derbenev A.V.
        • Zsombok A.
        Sympathetic innervation of the mouse kidney and liver arising from prevertebral ganglia.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 2021; 321: R328-R337
        • Vong L.
        • Ye C.
        • Yang Z.
        • Choi B.
        • Chua Jr., S.
        • Lowell B.B.
        Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons.
        Neuron. 2011; 71: 142-154
        • Voss-Andreae A.
        • Murphy J.G.
        • Ellacott K.L.
        • Stuart R.C.
        • Nillni E.A.
        • Cone R.D.
        • Fan W.
        Role of the central melanocortin circuitry in adaptive thermogenesis of brown adipose tissue.
        Endocrinology. 2007; 148: 1550-1560
        • Wada N.
        • Hirako S.
        • Takenoya F.
        • Kageyama H.
        • Okabe M.
        • Shioda S.
        Leptin and its receptors.
        J. Chem. Neuroanat. 2014; 61–62: 191-199
        • Williams K.W.
        • Zsombok A.
        • Smith B.N.
        Rapid inhibition of neurons in the dorsal motor nucleus of the vagus by leptin.
        Endocrinology. 2007; 148: 1868-1881
        • Xu H.
        • Smith B.N.
        Presynaptic ionotropic glutamate receptors modulate GABA release in the mouse dorsal motor nucleus of the vagus.
        Neuroscience. 2015; 308: 95-105
        • Yu S.
        • Cheng H.
        • Francois M.
        • Qualls-Creekmore E.
        • Huesing C.
        • He Y.
        • Jiang Y.
        • Gao H.
        • Xu Y.
        • Zsombok A.
        • Derbenev A.V.
        • Nillni E.A.
        • Burk D.H.
        • Morrison C.D.
        • Berthoud H.R.
        • Munzberg H.
        Preoptic leptin signaling modulates energy balance independent of body temperature regulation.
        elife. 2018; 7
        • Yu S.
        • Qualls-Creekmore E.
        • Rezai-Zadeh K.
        • Jiang Y.
        • Berthoud H.R.
        • Morrison C.D.
        • Derbenev A.V.
        • Zsombok A.
        • Munzberg H.
        Glutamatergic preoptic area neurons that express leptin receptors drive temperature-dependent body weight homeostasis.
        J. Neurosci. 2016; 36: 5034-5046
        • Zhang Y.
        • Kerman I.A.
        • Laque A.
        • Nguyen P.
        • Faouzi M.
        • Louis G.W.
        • Jones J.C.
        • Rhodes C.
        • Munzberg H.
        Leptin-receptor-expressing neurons in the dorsomedial hypothalamus and median preoptic area regulate sympathetic brown adipose tissue circuits.
        J. Neurosci. 2011; 31: 1873-1884
        • Zsombok A.
        • Jiang Y.
        • Gao H.
        • Anwar I.J.
        • Rezai-Zadeh K.
        • Enix C.L.
        • Munzberg H.
        • Derbenev A.V.
        Regulation of leptin receptor-expressing neurons in the brainstem by TRPV1.
        Physiol Rep. 2014; 2