Research Article| Volume 246, 103073, May 2023

Abdominal TRPV1 channel desensitization enhances stress-induced hyperthermia during social stress in rats

Published:January 26, 2023DOI:


      • TRPV1 desensitization increased CBT and BAT temperature but did not change tail skin temperature and HR during rest;
      • Abdominal TRPV1 desensitization intensified the social stress-mediated CBT and BAT increases;
      • TRPV1 abolished the increase in tail skin temperature that occurs during and after social stress;
      • TRPV1 desensitization delayed the HR recovery after the exposure to social stress.



      In rats, stress-induced hyperthermia caused by social interaction depends on brown adipose tissue (BAT) thermogenesis and peripheral vasoconstriction. However, the peripheral mechanisms responsible for regulating the level of hyperthermia during social stress are still unknown. The transient receptor potential vanilloid 1 (TRPV1) subfamily, expressed in sensory and visceral neurons, can serve as a thermoreceptor. Here, we tested the hypothesis that the abdominal TRPV1 is essential in regulating stress-induced hyperthermia during social stress.

      Main methods

      Male Wistar rats received an intraperitoneal injection of Resiniferatoxin (RTX) - an ultra-potent capsaicin analog, (i.e., to desensitize the TRPV1 channels) or vehicle. Seven days later, we evaluated the effects of abdominal TRPV1 channels desensitization on core body temperature (CBT), brown adipose tissue (BAT) temperature, tail skin temperature, and heart rate (HR) of rats subjected to a social stress protocol.

      Key findings

      We found abdominal TRPV1 desensitization increased CBT and BAT temperature but did not change tail skin temperature and HR during rest. However, under social stress, we found that abdominal TRPV1 desensitization heightened the increase in CBT and BAT caused by stress. Also, it abolished the increase in tail skin temperature that occurs during and after social stress. TRPV1 desensitization also delayed the HR recovery after the exposure to the social stress.


      These results show that abdominal TRPV1 channels desensitization heightens stress-induced hyperthermia, causing heat dissipation during and after social stress, enabling optimal thermal control during social encounters.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Autonomic Neuroscience: Basic and Clinical
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Bennett A.F.
        Temperature and muscle.
        J. Exp. Biol. 1985; 115: 333-344
        • Bielefeldt K.
        • Lamb K.
        • Gebhart G.F.
        Convergence of sensory pathways in the development of somatic and visceral hypersensitivity.
        Am. J. Physiol. Gastrointest. Liver Physiol. 2006; 291: G658-G665
        • Blessing W.
        • Mohammed M.
        • Ootsuka Y.
        Brown adipose tissue thermogenesis, the basic rest-activity cycle, meal initiation, and bodily homeostasis in rats.
        Physiol. Behav. 2013; 121: 61-69
        • Blessing W.
        • McAllen R.
        • McKinley M.
        Control of the cutaneous circulation by the central nervous system.
        Compr Physiol. 2016; 6: 1161-1197
        • Borrelli M.J.
        • Rausch C.M.
        Microelectrode measurements of the transmembrane potential in baby hamster kidney, (Chinese hamster ovary), NG108-15 neuroblastoma and swiss 3T3 cells at 37.0 or 43.0 degrees C.
        Int. J. Hyperth. 1991; 7: 827-838
        • Caterina M.J.
        • Schumacher M.A.
        • Tominaga M.
        • Rosen T.A.
        • Levine J.D.
        • Julius D.
        The capsaicin receptor: a heat-activated ion channel in the pain pathway.
        Nature. 1997; 389: 816-824
        • Cheng W.
        • Yang F.
        • Takanishi C.L.
        • Zheng J.
        Thermosensitive TRPV channel subunits coassemble into heteromeric channels with intermediate conductance and gating properties.
        J Gen Physiol. 2007; 129: 191-207
        • Cheng W.
        • Yang F.
        • Liu S.
        • Colton C.K.
        • Wang C.
        • Cui Y.
        • et al.
        Heteromeric heat-sensitive transient receptor potential channels exhibit distinct temperature and chemical response.
        J. Biol. Chem. 2012; 287: 7279-7288
        • Chung M.-K.
        • Lee H.
        • Mizuno A.
        • Suzuki M.
        • Caterina M.J.
        TRPV3 and TRPV4 mediate warmth-evoked currents in primary mouse Keratinocytes*.
        J. Biol. Chem. 2004; 279: 21569-21575
        • Dhaka A.
        • Uzzell V.
        • Dubin A.E.
        • Mathur J.
        • Petrus M.
        • Bandell M.
        • et al.
        TRPV1 is activated by both acidic and basic pH.
        J. Neurosci. 2009; 29: 153-158
        • Flasar M.H.
        • Goldberg E.
        Acute abdominal pain.
        Med. Clin. North Am. 2006; 90: 481-503
        • Gavva N.R.
        • Treanor J.J.
        • Garami A.
        • Fang L.
        • Surapaneni S.
        • Akrami A.
        • et al.
        Pharmacological blockade of the vanilloid receptor TRPV1 elicits marked hyperthermia in humans.
        Pain. 2008; 136: 202-210
        • Gordon C.J.
        Thermal biology of the laboratory rat.
        Physiol. Behav. 1990; 47: 963-991
        • Karai L.
        • Brown D.C.
        • Mannes A.J.
        • Connelly S.T.
        • Brown J.
        • Gandal M.
        • et al.
        Deletion of vanilloid receptor 1-expressing primary afferent neurons for pain control.
        J. Clin. Invest. 2004; 113: 1344-1352
        • Kataoka N.
        • Nakamura K.
        Direct pathway from ventral medial prefrontal cortex to dorsomedial hypothalamus drives psychological stress-induced hyperthermia.
        FASEB J. 2016; 30 (2-.2)
        • Kataoka N.
        • Shima Y.
        • Nakajima K.
        • Nakamura K.
        A central master driver of psychosocial stress responses in the rat.
        Science. 2020; 367: 1105-1112
        • Keeney A.
        • Jessop D.S.
        • Harbuz M.S.
        • Marsden C.A.
        • Hogg S.
        • Blackburn-Munro R.E.
        Differential effects of acute and chronic social defeat stress on hypothalamic-pituitary-adrenal axis function and hippocampal serotonin release in mice.
        J. Neuroendocrinol. 2006; 18: 330-338
        • Kunstetter A.C.
        • Wanner S.P.
        • Madeira L.G.
        • Wilke C.F.
        • Rodrigues L.O.
        • Lima N.R.
        Association between the increase in brain temperature and physical performance at different exercise intensities and protocols in a temperate environment.
        Braz. J. Med. Biol. Res. 2014; 47: 679-688
        • Lantéri-Minet M.
        • Isnardon P.
        • de Pommery J.
        • Menétrey D.
        Spinal and hindbrain structures involved in visceroception and visceronociception as revealed by the expression of fos, Jun and Krox-24 proteins.
        Neuroscience. 1993; 55: 737-753
        • Mackowiak P.A.
        Concepts of fever.
        Arch. Intern. Med. 1998; 158: 1870-1881
        • Magazanik A.
        • Shapiro Y.
        • Shibolet S.
        Dynamic changes in acid base balance during heatstroke in dogs.
        Pflugers Arch. 1980; 388: 129-135
        • Malin S.
        • Molliver D.
        • Christianson J.A.
        • Schwartz E.S.
        • Cornuet P.
        • Albers K.M.
        • et al.
        TRPV1 and TRPA1 function and modulation are target tissue dependent.
        J. Neurosci. 2011; 31: 10516-10528
        • de Menezes R.C.
        • Zaretsky D.V.
        • Sarkar S.
        • Fontes M.A.
        • Dimicco J.A.
        Microinjection of muscimol into the periaqueductal gray suppresses cardiovascular and neuroendocrine response to air jet stress in conscious rats.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008; 295: R881-R890
        • Mesquita L.T.
        • Abreu A.R.
        • de Abreu A.R.
        • de Souza A.A.
        • de Noronha S.R.
        • Silva F.C.
        • et al.
        New insights on amygdala: basomedial amygdala regulates the physiological response to social novelty.
        Neuroscience. 2016; 330: 181-190
        • Mezzalira N.F.
        Efeito da Luz e Temperatura Sobre a Expressão de Genes do Relógio em Mamífero: Tecidos Periféricos como Modelo de Estudo.
        Universidade de São Paulo, 2015
        • Mohammed M.
        • Kulasekara K.
        • De Menezes R.C.
        • Ootsuka Y.
        • Blessing W.W.
        Inactivation of neuronal function in the amygdaloid region reduces tail artery blood flow alerting responses in conscious rats.
        Neuroscience. 2013; 228: 13-22
        • Mohammed M.
        • Ootsuka Y.
        • Blessing W.
        Brown adipose tissue thermogenesis contributes to emotional hyperthermia in a resident rat suddenly confronted with an intruder rat.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014; 306: R394-R400
        • Morrison S.F.
        • Nakamura K.
        • Madden C.J.
        Central control of thermogenesis in mammals.
        Exp. Physiol. 2008; 93: 773-797
        • Nakamura K.
        Neural circuit for psychological stress-induced hyperthermia.
        Temperature (Austin). 2015; 2: 352-361
        • Nilius B.
        • Szallasi A.
        Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine.
        Pharmacol. Rev. 2014; 66: 676-814
        • Olah Z.
        • Szabo T.
        • Karai L.
        • Hough C.
        • Fields R.D.
        • Caudle R.M.
        • et al.
        Ligand-induced dynamic membrane changes and cell deletion conferred by vanilloid receptor 1.
        J. Biol. Chem. 2001; 276: 11021-11030
        • Ootsuka Y.
        • de Menezes R.C.
        • Zaretsky D.V.
        • Alimoradian A.
        • Hunt J.
        • Stefanidis A.
        • et al.
        Brown adipose tissue thermogenesis heats brain and body as part of the brain-coordinated ultradian basic rest-activity cycle.
        Neuroscience. 2009; 164: 849-861
        • Romanovsky A.A.
        Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007; 292: R37-R46
        • Romanovsky A.A.
        • Almeida M.C.
        • Garami A.
        • Steiner A.A.
        • Norman M.H.
        • Morrison S.F.
        • et al.
        The transient receptor potential vanilloid-1 channel in thermoregulation: a thermosensor it is not.
        Pharmacol. Rev. 2009; 61: 228-261
        • Schicho R.
        • Florian W.
        • Liebmann I.
        • Holzer P.
        • Lippe I.T.
        Increased expression of TRPV1 receptor in dorsal root ganglia by acid insult of the rat gastric mucosa.
        Eur. J. Neurosci. 2004; 19: 1811-1818
        • Steiner A.A.
        • Turek V.F.
        • Almeida M.C.
        • Burmeister J.J.
        • Oliveira D.L.
        • Roberts J.L.
        • et al.
        Nonthermal activation of transient receptor potential vanilloid-1 channels in abdominal viscera tonically inhibits autonomic cold-defense effectors.
        J. Neurosci. 2007; 27: 7459-7468
        • Stupfel M.
        Carbon dioxide and temperature regulation of homeothermic mammals.
        in: Nahas G. Schaefer K.E. Carbon Dioxide and Metabolic Regulations. Springer New York, New York, NY1974: 163-186
        • Sun H.
        • Li D.P.
        • Chen S.R.
        • Hittelman W.N.
        • Pan H.L.
        Sensing of blood pressure increase by transient receptor potential vanilloid 1 receptors on baroreceptors.
        J. Pharmacol. Exp. Ther. 2009; 331: 851-859
        • Szolcsányi J.
        Effect of capsaicin on thermoregulation: an update with new aspects.
        Temperature (Austin). 2015; 2: 277-296
        • Szolcsányi J.
        • Sándor Z.
        Multisteric TRPV1 nocisensor: a target for analgesics.
        Trends Pharmacol. Sci. 2012; 33: 646-655
        • Tamaki Y.
        • Nakayama T.
        • Matsumura K.
        Effects of carbon dioxide inhalation on preoptic thermosensitive neurons.
        Pflugers Arch. 1986; 407: 8-13
        • Unsoeld M.
        • Lamprecht U.
        • Traub F.
        • Hermes B.
        • Scharpf M.
        • Potkrajcic V.
        • et al.
        MR thermometry data correlate with pathological response for soft tissue sarcoma of the lower extremity in a single center analysis of prospectively registered patients.
        Cancers. 2020; 12: 959
        • Vennekens R.
        • Owsianik G.
        • Nilius B.
        Vanilloid transient receptor potential cation channels: an overview.
        Curr. Pharm. Des. 2008; 14: 18-31
        • Yoneshiro T.
        • Saito M.
        Transient receptor potential activated brown fat thermogenesis as a target of food ingredients for obesity management.
        Curr. Opin. Clin. Nutr. Metab. Care. 2013; 16: 625-631
        • Yonghak P.
        • Miyata S.
        • Kurganov E.
        TRPV1 is crucial for thermal homeostasis in the mouse by heat loss behaviors under warm ambient temperature.
        Sci. Rep. 2020; 10: 8799
        • Young A.A.
        • Dawson N.J.
        Evidence for on-off control of heat dissipation from the tail of the rat.
        Can. J. Physiol. Pharmacol. 1982; 60: 392-398
        • Zhang X.
        • Xia M.
        • Li Y.
        • Liu H.
        • Jiang X.
        • Ren W.
        • et al.
        Analysis of the selectivity filter of the voltage-gated sodium channel Na(v)Rh.
        Cell Res. 2013; 23: 409-422
        • Zurovski Y.
        • Eckstein L.
        • Horowitz M.
        Heat stress and thermal dehydration: lactacidemia and plasma volume regulation.
        J. Appl. Physiol. (1985). 1991; 71: 2434-2439