Advertisement
Research Article| Volume 246, 103074, May 2023

Topographical distribution and morphology of SP-IR axons in the antrum, pylorus, and duodenum of mice

Published:January 27, 2023DOI:https://doi.org/10.1016/j.autneu.2023.103074

      Abstract

      Substance-P (SP) is a commonly used marker of nociceptive afferent axons, and it plays an important role in a variety of physiological functions including the regulation of motility, gut secretion, and vascular flow. Previously, we found that SP-immunoreactive (SP-IR) axons densely innervated the pyloric antrum of the flat-mount of the mouse whole stomach muscular layer. However, the regional distribution and morphology of SP-IR axons in the submucosa and mucosa were not well documented. In this study, the mouse antrum-pylorus-duodenum (APD) were transversely and longitudinally sectioned. A Zeiss M2 imager was used to scan the serial sections of each APD (each section montage consisted of 50–100 all-in-focus maximal projection images). To determine the detailed structures of SP-IR axons and terminals, we used the confocal microscope to scan the regions of interest. We found that 1) SP-IR axons innervated the muscular, submucosal, and mucosal layers. 2) In the muscular layer, SP-IR varicose axons densely innervated the muscles and formed varicose terminals which encircled myenteric neurons. 3) In the submucosa, SP-IR axons innervated blood vessels and submucosal ganglia and formed a network in Brunner’s glands. 4) In the mucosa, SP-IR axons innervated the muscularis mucosae. Some SP-IR axons entered the lamina propria. 5) The muscular layer of the antrum and duodenum showed a higher SP-IR axon density than the pyloric sphincter. 6) SP-IR axons were from extrinsic and intrinsic origins. This work provided a comprehensive view of the distribution and morphology of SP-IR axons in the APD at single cell/axon/varicosity scale. This data will be used to create a 3D scaffold of the SP-IR axon innervation of the APD.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Autonomic Neuroscience: Basic and Clinical
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Anetsberger D.
        • Kürten S.
        • Jabari S.
        • Brehmer A.
        Morphological and immunohistochemical characterization of human intrinsic gastric neurons.
        Cells Tissues Organs. 2018; 206 (Epub 2019 Jun 21 PMID: 31230045): 183-195https://doi.org/10.1159/000500566
        • Anlauf M.
        • Schäfer M.K.
        • Eiden L.
        • Weihe E.
        Chemical coding of the human gastrointestinal nervous system: cholinergic, VIPergic, and catecholaminergic phenotypes.
        J. Comp. Neurol. 2003; 459 (PMID: 12629668): 90-111https://doi.org/10.1002/cne.10599
        • Berthoud H.R.
        Morphological analysis of vagal input to gastrin releasing peptide and vasoactive intestinal peptide containing neurons in the rat glandular stomach.
        J. Comp. Neurol. 1996; 370 (PMID: 8797157): 61-70https://doi.org/10.1002/(SICI)1096-9861(19960617)370:1<61:AID-CNE6>3.0.CO;2-J
        • Berthoud H.R.
        • Powley T.L.
        Vagal afferent innervation of the rat fundic stomach: morphological characterization of the gastric tension receptor.
        J. Comp. Neurol. 1992; 319: 261-276
        • Bosshard A.
        • Chery-Croze S.
        • Cuber J.C.
        • Dechelette M.A.
        • Berger F.
        • Chayvialle J.A.
        Immunocytochemical study of peptidergic structures in Brunner's glands.
        Gastroenterology. 1989 Dec; 97 (PMID: 2479587): 1382-1388https://doi.org/10.1016/0016-5085(89)90380-6
        • Brehmer A.
        • Rupprecht H.
        • Neuhuber W.
        Two submucosal nerve plexus in human intestines.
        Histochem. Cell Biol. 2010; 133 (Epub 2009 Nov 13 PMID: 19911189): 149-161https://doi.org/10.1007/s00418-009-0657-2
        • Bulc M.
        • Palus K.
        • Całka J.
        • Zielonka Ł.
        Changes in immunoreactivity of sensory substances within the enteric nervous system of the porcine stomach during experimentally induced diabetes.
        J. Diabetes Res. 2018; 24: 4735659https://doi.org/10.1155/2018/4735659. PMID: 30140706; PMCID: PMC6081574
        • Calka J.
        Increased expression of CART, nNOS, VIP, PACAP, SP and GAL in enteric neurons of the porcine stomach prepyloric region following hydrochloric acid infusion.
        Folia Histochem. Cytobiol. 2019; 57 (Epub 2019 Dec 16 PMID: 31840794): 179-187https://doi.org/10.5603/FHC.a2019.0020
        • Chang M.M.
        • Leeman S.E.
        Isolation of a sialogogic peptide from bovine hypothalamic tissue and its characterization as substance P.
        J. Biol. Chem. 1970; 245 (PMID: 5456150): 4784-4790
        • Chang M.M.
        • Leeman S.E.
        • Niall H.D.
        Amino-acid sequence of substance P.
        Nat. New. Biol. 1971 Jul 21; 232 (PMID: 5285346): 86-87https://doi.org/10.1038/newbio232086a0
        • Chibishev A.
        • Simonovska N.
        • Shikole A.
        Post-corrosive injuries of upper gastrointestinal tract.
        Prilozi. 2010; 31 (PMID: 20693948): 297-316
        • Costa M.
        • Furness J.B.
        The origins of the adrenergic fibres which innervate the internal anal sphincter, the rectum, and other tissues of the pelvic region in the Guinea-pig.
        Z. Anat. Entwickl. Gesch. 1973; 140: 129-142https://doi.org/10.1007/BF00520326
        • Costa M.
        • Cuello A.C.
        • Furness J.B.
        • Franco R.
        Distribution of enteric neurons showing immunoreactivity for substance P in the guinea-pig ileum.
        Neuroscience. 1980; 5 (PMID: 6154904): 323-331https://doi.org/10.1016/0306-4522(80)90108-6
        • Costa M.
        • Furness J.B.
        • Llewellyn-Smith I.J.
        • Cuello A.C.
        Projections of substance P-containing neurons within the guinea-pig small intestine.
        Neuroscience. 1981; 6 (PMID: 6164014): 411-424https://doi.org/10.1016/0306-4522(81)90134-2
        • Datar P.
        • Srivastava S.
        • Coutinho E.
        • Govil G.
        Substance P: structure, function, and therapeutics.
        Curr. Top. Med. Chem. 2004; 4 (PMID: 14754378): 75-103https://doi.org/10.2174/1568026043451636
        • Dockray G.J.
        • Vaillant C.
        • Walsh J.H.
        The neuronal origin of bombesin-like immunoreactivity in the rat gastrointestinal tract.
        Neuroscience. 1979; 4 (PMID: 390417): 1561-1568https://doi.org/10.1016/0306-4522(79)90019-8
        • Domoto T.
        • Oki M.
        • Kotoh T.
        • Nakamura T.
        Heterogenous distribution of peptide-containing nerve fibres within the circular muscle layer of the human pylorus.
        Clin. Auton. Res. 1992; 2 (PMID: 1283961): 403-407https://doi.org/10.1007/BF01831399
        • Edin R.
        • Lundberg J.
        • Dahlström A.
        • Hökfelt T.
        • Terenius L.
        • Ahlman H.
        The peptidergic neural control of the feline pylorus.
        Chir. Forum Exp. Klin. Forsch. 1980; (PMID: 6156058): 233-237https://doi.org/10.1007/978-3-642-67617-8_47
        • Ekblad E.
        • Ekelund M.
        • Graffner H.
        • Håkanson R.
        • Sundler F.
        Peptide-containing nerve fibers in the stomach wall of rat and mouse.
        Gastroenterology. 1985; 89 (PMID: 2408958): 73-85https://doi.org/10.1016/0016-5085(85)90747-4
        • Ekblad E.
        • Mei Q.
        • Sundler F.
        Innervation of the gastric mucosa.
        Microsc. Res. Tech. 2000; 48 (PMID: 10700042): 241-257https://doi.org/10.1002/(SICI)1097-0029(20000301)48:5<241::AID-JEMT2>3.0.CO;2-2
        • Ericson A.C.
        • Kechagias S.
        • Oqvist G.
        • Sjöstrand S.E.
        Morphological examination of the termination pattern of substance P-immunoreactive nerve fibers in human antral mucosa.
        Regul. Pept. 2002; 107: 79-86
        • Felipe C.
        • Herrero J.
        • O'Brien J.
        • et al.
        Altered nociception, analgesia and aggression in mice lacking the receptor for substance P.
        Nature. 1998; 392: 394-397https://doi.org/10.1038/32904
        • Ferri G.L.
        • Botti P.
        • Biliotti G.
        • Rebecchi L.
        • Bloom S.R.
        • Tonelli L.
        • Labò G.
        • Polak J.M.
        VIP-, substance P- and met-enkephalin-immunoreactive innervation of the human gastroduodenal mucosa and Brunner's glands.
        Gut. 1984; 25 (PMID: 6205942; PMCID: PMC1432483): 948-952https://doi.org/10.1136/gut.25.9.948
        • Ferri G.L.
        • Adrian T.E.
        • Soimero L.
        • Blank M.
        • Cavalli D.
        • Biliotti G.
        • Polak J.M.
        • Bloom S.R.
        Intramural distribution of immunoreactive vasoactive intestinal polypeptide (VIP), substance P, somatostatin and mammalian bombesin in the oesophago-gastro-pyloric region of the human gut.
        Cell Tissue Res. 1989; 256 (PMID: 2469539): 191-197https://doi.org/10.1007/BF00224734
        • Flemström G.
        • Kivilaakso E.
        Demonstration of a pH gradient at the luminal surface of rat duodenum in vivo and its dependence on mucosal alkaline secretion.
        Gastroenterology. 1983; 84 (PMID: 6572163): 787-794
        • Furness J.B.
        • Papka R.E.
        • Della N.G.
        • Costa M.
        • Eskay R.L.
        Substance P-like immunoreactivity in nerves associated with the vascular system of guinea-pigs.
        Neuroscience. 1982; 7 (PMID: 6176910): 447-459https://doi.org/10.1016/0306-4522(82)90279-2
        • Furness J.B.
        • Lloyd K.C.
        • Sternini C.
        • Walsh J.H.
        Evidence that myenteric neurons of the gastric corpus project to both the mucosa and the external muscle: myectomy operations on the canine stomach.
        Cell Tissue Res. 1991; 266 (PMID: 1811878): 475-481https://doi.org/10.1007/BF00318588
        • Furness J.B.
        • Callaghan B.P.
        • Rivera L.R.
        • Cho H.J.
        The enteric nervous system and gastrointestinal innervation: integrated local and central control.
        Adv. Exp. Med. Biol. 2014; 817: 39-71
        • Furness J.B.
        • Di Natale M.
        • Hunne B.
        • Oparija-Rogenmozere L.
        • Ward S.M.
        • Sasse K.C.
        • Powley T.L.
        • Stebbing M.J.
        • Jaffey D.
        • Fothergill L.J.
        The identification of neuronal control pathways supplying effector tissues in the stomach.
        Cell Tissue Res. 2020; 382 (Epub 2020 Nov 6. PMID: 33156383; PMCID: PMC7727782): 433-445https://doi.org/10.1007/s00441-020-03294-7
        • Gentile C.
        • Romeo C.
        • Impellizzeri P.
        • Turiaco N.
        • Esposito M.
        • Di Mauro D.
        • Mondello M.R.
        A possible role of the plasmalemmal cytoskeleton, nitric oxide synthase, and innervation in infantile hypertrophic pyloric stenosis. A confocal laser scanning microscopic study.
        Pediatr. Surg. Int. 1998; 14 (PMID: 9880695): 45-50https://doi.org/10.1007/s003830050433
        • Gouin O.
        • L'Herondelle K.
        • Lebonvallet N.
        • Le Gall-Ianotto C.
        • Sakka M.
        • Buhé V.
        • Plée-Gautier E.
        • Carré J.L.
        • Lefeuvre L.
        • Misery L.
        • Le Garrec R.
        TRPV1 and TRPA1 in cutaneous neurogenic and chronic inflammation: pro-inflammatory response induced by their activation and their sensitization.
        ProteinCell. 2017; 8 (Epub 2017 Mar 31. PMID: 28364279; PMCID: PMC5563280): 644-661https://doi.org/10.1007/s13238-017-0395-5
        • Gramer M.J.
        • van den Bremer E.T.
        • van Kampen M.D.
        • Kundu A.
        • Kopfmann P.
        • Etter E.
        • Stinehelfer D.
        • Long J.
        • Lannom T.
        • Noordergraaf E.H.
        • Gerritsen J.
        • Labrijn A.F.
        • Schuurman J.
        • van Berkel P.H.
        • Parren P.W.
        Production of stable bispecific IgG1 by controlled Fab-arm exchange: scalability from bench to large-scale manufacturing by application of standard approaches.
        MAbs. 2013; 5 (Epub 2013 Aug 22. PMID: 23995617; PMCID: PMC3896610): 962-973https://doi.org/10.4161/mabs.26233
        • Green T.
        • Dockray G.J.
        Calcitonin gene-related peptide and substance P in afferents to the upper gastrointestinal tract in the rat.
        Neurosci. Lett. 1987; 76 (PMID: 2438603): 151-156https://doi.org/10.1016/0304-3940(87)90707-5
        • Green T.
        • Dockray G.J.
        Characterization of the peptidergic afferent innervation of the stomach in the rat, mouse and Guinea-pig.
        Neuroscience. 1988; 25 (PMID: 2455875): 181-193https://doi.org/10.1016/0306-4522(88)90017-6
        • Greenwood B.
        • Doolittle T.
        • See N.A.
        • Koch T.R.
        • Dodds W.J.
        • Davison J.S.
        Effects of substance P and vasoactive intestinal polypeptide on contractile activity and epithelial transport in the ferret jejunum.
        Gastroenterology. 1990; 98 (PMID: 1692548): 1509-1517https://doi.org/10.1016/0016-5085(90)91083-i
        • Grönbech J.E.
        • Lacy E.R.
        Substance P attenuates gastric mucosal hyperemia after stimulation of sensory neurons in the rat stomach.
        Gastroenterology. 1994; 106 (PMID: 7507874): 440-449https://doi.org/10.1016/0016-5085(94)90603-3
        • Gyires K.
        Neuropeptides and gastric mucosal homeostasis.
        Curr. Top. Med. Chem. 2004; 4 (PMID: 14754377): 63-73https://doi.org/10.2174/1568026043451609
        • Harrison S.
        • Geppetti P.
        Substance p.
        Int. J. Biochem. Cell Biol. 2001; 33 (PMID: 11378438): 555-576https://doi.org/10.1016/s1357-2725(01)00031-0
        • Henning G.W.
        • Spencer N.J.
        Physiology of gastric motility patterns.
        in: Said H.M. Physiology of the Gastrointestinal Tract. Elsevier, Academic Press2018: 469-484
        • Hersey S.J.
        • Sachs G.
        Gastric acid secretion.
        Physiol. Rev. 1995; 75 (PMID: 7831396): 155-189https://doi.org/10.1152/physrev.1995.75.1.155
        • Hökfelt T.
        • Kellerth J.O.
        • Nilsson G.
        • Pernow B.
        Substance p: localization in the central nervous system and in some primary sensory neurons.
        Science. 1975; 190 (PMID: 242075): 889-890https://doi.org/10.1126/science.242075
        • Hökfelt T.
        • Johansson O.
        • Ljungdahl Å.
        • et al.
        Peptidergic neurones.
        Nature. 1980; 284: 515-521https://doi.org/10.1038/284515a0
        • Holzer P.
        • Farzi A.
        Neuropeptides and the microbiota-gut-brain axis.
        Adv. Exp. Med. Biol. 2014; 817 (PMID: 24997035; PMCID: PMC4359909): 195-219https://doi.org/10.1007/978-1-4939-0897-4_9
        • Holzer P.
        • Guth P.H.
        Neuropeptide control of rat gastric mucosal blood flow. Increase by calcitonin gene-related peptide and vasoactive intestinal polypeptide, but not substance P and neurokinin a.
        Circ. Res. 1991; 68 (PMID: 1702035): 100-105https://doi.org/10.1161/01.res.68.1.100
        • Holzer P.
        • Holzer-Petsche U.
        Tachykinins in the gut. Part II. Roles in neural excitation, secretion and inflammation.
        Pharmacol Ther. 1997; 73 (PMID: 9175156): 219-263https://doi.org/10.1016/s0163-7258(96)00196-9
        • Holzer P.
        • Holzer-Petsche U.
        Tachykinin receptors in the gut: physiological and pathological implications.
        Curr. Opin. Pharmacol. 2001; 1 (PMID: 11757813): 583-590https://doi.org/10.1016/s1471-4892(01)00100-x
        • Holzer P.
        • Lippe I.I.
        • Raybould H.E.
        • Pabst M.A.
        • Livingston E.H.
        • Amann R.
        • Peskar B.M.
        • Peskar B.A.
        • Taché Y.
        • Guth P.H.
        Role of peptidergic sensory neurons in gastric mucosal blood flow and protection.
        Ann. N. Y. Acad. Sci. 1991; 632 (PMID: 1952629): 272-282https://doi.org/10.1111/j.1749-6632.1991.tb33115.x
        • Jin J.G.
        • Misra S.
        • Grider J.R.
        • Makhlouf G.M.
        Functional difference between SP and NKA: relaxation of gastric muscle by SP is mediated by VIP and NO.
        Am. J. Phys. 1993; 264 (PMID: 7682782): G678-G685https://doi.org/10.1152/ajpgi.1993.264.4.G678
        • Kaleczyc J.
        • Klimczuk M.
        • Franke-Radowiecka A.
        • Sienkiewicz W.
        • Majewski M.
        • Łakomy M.
        The distribution and chemical coding of intramural neurons supplying the porcine stomach - the study on normal pigs and on animals suffering from swine dysentery.
        Anat. Histol. Embryol. 2007; 36 (PMID: 17535350): 186-193https://doi.org/10.1111/j.1439-0264.2006.00744.x
        • Kawabata A.
        • Kinoshita M.
        • Nishikawa H.
        • Kuroda R.
        • Nishida M.
        • Araki H.
        • Arizono N.
        • Oda Y.
        • Kakehi K.
        The protease-activated receptor-2 agonist induces gastric mucus secretion and mucosal cytoprotection.
        J. Clin. Invest. 2001; 107 (PMID: 11390426; PMCID: PMC209315): 1443-1450https://doi.org/10.1172/JCI10806
        • Keast J.R.
        • Furness J.B.
        • Costa M.
        Distribution of certain peptide-containing nerve fibres and endocrine cells in the gastrointestinal mucosa in five mammalian species.
        J. Comp. Neurol. 1985; 236 (PMID: 2414338): 403-422https://doi.org/10.1002/cne.902360308
        • Kelly K.A.
        Gastric emptying of liquids and solids: roles of proximal and distal stomach.
        Am. J. Phys. 1980; 239 (PMID: 6996495): G71-G76https://doi.org/10.1152/ajpgi.1980.239.2.G71
        • Kelly K.A.
        Motility of the stomach and gastroduodenal junction.
        in: Physiology of the Gastrointestinal Tract. 1981: 393-410
        • Kholodenko I.
        • Kalinovsky D.
        • Svirshchevskaya E.
        • Doronin I.
        • Konovalova M.
        • Kibardin A.
        • Shamanskaya T.
        • Larin S.
        • Deyev M.
        • Kholodenko R.
        Multimerization through pegylation improves pharmacokinetic properties of scFv fragments of GD2-specific antibodies.
        Molecules. 2019; 24 (PMID: 31653037; PMCID: PMC6864547): 3835https://doi.org/10.3390/molecules24213835
        • Kitamura N.
        • Yamada J.
        • Yamamoto Y.
        • Yamashita T.
        Substance P-immunoreactive neurons of the bovine forestomach mucosa: their presumptive role in a sensory mechanism.
        Arch. Histol. Cytol. 1993; 56 (PMID: 7506920): 399-410https://doi.org/10.1679/aohc.56.399
        • Kitsukawa Y.
        • Turner R.J.
        • Pradhan T.K.
        • Jensen R.T.
        Gastric chief cells possess NK1 receptors which mediate pepsinogen secretion and are regulated by agents that increase cAMP and phospholipase C.
        Biochim. Biophys. Acta. 1996; 1312 (PMID: 8672532): 105-116https://doi.org/10.1016/0167-4889(96)00026-2
        • Kraneveld A.D.
        • Buckley T.L.
        • van Heuven-Nolsen D.
        • van Schaik Y.
        • Koster A.S.
        • Nijkamp F.P.
        Delayed-type hypersensitivity-induced increase in vascular permeability in the mouse small intestine: inhibition by depletion of sensory neuropeptides and NK1 receptor blockade.
        Br. J. Pharmacol. 1995 Apr; 114 (PMID: 7606352; PMCID: PMC1510295): 1483-1489https://doi.org/10.1111/j.1476-5381.1995.tb13374.x
        • Layke J.C.
        • Lopez pp.
        Gastric cancer: diagnosis and treatment options.
        Am Fam Physician. 2004 Mar 1; 69 (PMID: 15023013): 1133-1140
        • Leander S.
        • Håkanson R.
        • Rosell S.
        • Folkers K.
        • Sundler F.
        • Tornqvist K.
        A specific substance P antagonist blocks smooth muscle contractions induced by non-cholinergic, non-adrenergic nerve stimulation.
        Nature. 1981; 294 (PMID: 6171733): 467-469https://doi.org/10.1038/294467a0
        • Lee H.S.
        • Nam Y.S.
        Immunohistochemical localization of calcium binding proteins and some neurotransmitters in myenteric plexus of goat stomach.
        J. Vet. Sci. 2006; 7 (PMID: 17106220; PMCID: PMC3242137): 315-319https://doi.org/10.4142/jvs.2006.7.4.315
        • Leslie R.A.
        • Gwyn D.G.
        • Hopkins D.A.
        The central distribution of the cervical vagus nerve and gastric afferent and efferent projections in the rat.
        Brain Res. Bull. 1982; 8 (PMID: 6173102): 37-43https://doi.org/10.1016/0361-9230(82)90025-9
        • Leung C.
        • Robbins S.
        • Moss A.
        • Heal M.
        • Osanlouy M.
        • Christie R.
        • Farahani N.
        • Monteith C.
        • Chen J.
        • Hunter P.
        • Tappan S.
        • Vadigepalli R.
        • Cheng Z.J.
        • Schwaber J.S.
        3D single cell scale anatomical map of sex-dependent variability of the rat intrinsic cardiac nervous system.
        iScience. 2021; 24 (PMID: 34355144; PMCID: PMC8324857): 102795https://doi.org/10.1016/j.isci.2021.102795
        • Li C.
        • Micci M.A.
        • Murthy K.S.
        • Pasricha P.J.
        Substance P is essential for maintaining gut muscle contractility: a novel role for coneurotransmission revealed by botulinum toxin.
        Am. J. Physiol. Gastrointest. Liver Physiol. 2014; 306 (Epub 2014 Apr 3. PMID: 24699329; PMCID: PMC4347745): G839-G848https://doi.org/10.1152/ajpgi.00436.2012
        • Lidberg P.
        On the role of substance P and serotonin in the pyloric motor control. An experimental study in cat and rat.
        Acta Physiol. Scand. Suppl. 1985; 538 (PMID: 2418634): 1-69
        • Lidberg P.
        • Dahlström A.
        • Lundberg J.M.
        • Ahlman H.
        Different modes of action of substance P in the motor control of the feline stomach and pylorus.
        Regul. Pept. 1983; 7 (PMID: 6196809): 41-52https://doi.org/10.1016/0167-0115(83)90280-x
        • Ma J.
        • Mistareehi A.
        • Madas J.
        • Kwiat A.
        • Chen J.
        • Bendowski K.
        • Nguyen D.
        • Powley T.
        • Furness J.
        • Cheng Z.J.
        Topographical Organization and morphology of Substance P (SP)-IR axons in the Whole Stomach of Mice.
        Journal of Comparative Neurology. 2022; 531 (PMID: 36385363): 188-216https://doi.org/10.1002/cne.25386
        • Maggi C.A.
        Tachykinins and calcitonin gene-related peptide (CGRP) as co-transmitters released from peripheral endings of sensory nerves.
        Prog. Neurobiol. 1995; 45 (PMID: 7716258): 1-98https://doi.org/10.1016/0301-0082(94)e0017-b
        • Malmfors G.
        • Sundler F.
        Peptidergic innervation in infantile hypertrophic pyloric stenosis.
        J. Pediatr. Surg. 1986; 21 (PMID: 2422340): 303-306https://doi.org/10.1016/s0022-3468(86)80189-0
        • Mashaghi A.
        • Marmalidou A.
        • Tehrani M.
        • Grace P.M.
        • Pothoulakis C.
        • Dana R.
        Neuropeptide substance P and the immune response.
        Cell. Mol. Life Sci. 2016; 73: 4249-4264https://doi.org/10.1007/s00018-016-2293-z
        • Mazzuoli G.
        • Lucherini M.C.
        • Russo D.
        • Clavenzani P.
        • Chiocchetti R.
        Intrinsic neuronal control of the pyloric sphincter of the lamb.
        J. Chem. Neuroanat. 2008; 36 (Epub 2008 May 15 PMID: 18571894): 98-106https://doi.org/10.1016/j.jchemneu.2008.05.002
        • Michel K.
        • Reiche D.
        • Schemann M.
        Projections and neurochemical coding of motor neurones to the circular and longitudinal muscle of the guinea pig gastric corpus.
        Pflugers Arch. 2000 Jul; 440 (PMID: 10954325): 393-408https://doi.org/10.1007/s004240000299
        • Milenov K.
        • Golenhofen K.
        Differentiated contractile responses of gastric smooth muscle to substance P.
        Pflugers Arch. 1983; 397 (PMID: 6191275): 29-34https://doi.org/10.1007/BF00585164
        • Minagawa H.
        • Shiosaka S.
        • Inoue H.
        • Hayashi N.
        • Kasahara A.
        • Kamata T.
        • Tohyama M.
        • Shiotani Y.
        Origins and three-dimensional distribution of substance P-containing structures on the rat stomach using whole-mount tissue.
        Gastroenterology. 1984; 86 (PMID: 6196253): 51-59
        • Mittal R.
        • Debs L.H.
        • Patel A.P.
        • Nguyen D.
        • Patel K.
        • O'Connor G.
        • Grati M.
        • Mittal J.
        • Yan D.
        • Eshraghi A.A.
        • Deo S.K.
        • Daunert S.
        • Liu X.Z.
        Neurotransmitters: the critical modulators regulating gut-brain Axis.
        J. Cell. Physiol. 2017; 232 (Epub 2017 Apr 10. PMID: 27512962; PMCID: PMC5772764): 2359-2372https://doi.org/10.1002/jcp.25518
        • Morita K.
        • North R.
        • Katayama Y.
        Evidence that substance P is a neurotransmitter in the myenteric plexus.
        Nature. 1980; 287: 151-152https://doi.org/10.1038/287151a0
        • Nakajima K.
        • Tooyama I.
        • Yasuhara O.
        • Aimi Y.
        • Kimura H.
        Immunohistochemical demonstration of choline acetyltransferase of a peripheral type (pChAT) in the enteric nervous system of rats.
        J. Chem. Neuroanat. 2000; 18 (PMID: 10708917): 31-40https://doi.org/10.1016/s0891-0618(99)00058-7
        • Nicolau M.
        • Sirois M.G.
        • Bui M.
        • Plante G.E.
        • Sirois P.
        • Regoli D.
        Plasma extravasation induced by neurokinins in conscious rats: receptor characterization with agonists and antagonists.
        Can. J. Physiol. Pharmacol. 1993; 71 (PMID: 7691388): 217-221https://doi.org/10.1139/y93-034
        • Niel J.P.
        Rôle de la substance P dans le contrôle nerveux de la motricité digestive [Role of substance P in the nervous system control of digestive motility].
        Arch Int Physiol Biochim Biophys. 1991; 99 (French) (PMID: 1720693): A65-A76https://doi.org/10.3109/13813459109145918
        • Nilsson G.
        • Larsson L.I.
        • Håkanson R.
        • et al.
        Localization of substance P-like immunoreactivity in mouse gut.
        Histochemistry. 1975; 43: 97-99https://doi.org/10.1007/BF00490158
        • O'Connor T.M.
        • O'Connell J.
        • O'Brien D.I.
        • Goode T.
        • Bredin C.P.
        • Shanahan F.
        The role of substance P in inflammatory disease.
        J. Cell. Physiol. 2004; 201 (PMID: 15334652): 167-180https://doi.org/10.1002/jcp.20061
        • Osanlouy M.
        • Bandrowski A.
        • de Bono B.
        • Brooks D.
        • Cassarà A.M.
        • Christie R.
        • Ebrahimi N.
        • Gillespie T.
        • Grethe J.S.
        • Guercio L.A.
        • Heal M.
        • Lin M.
        • Kuster N.
        • Martone M.E.
        • Neufeld E.
        • Nickerson D.P.
        • Soltani E.G.
        • Tappan S.
        • Wagenaar J.B.
        • Zhuang K.
        • Hunter P.J.
        The SPARC DRC: building a resource for the autonomic nervous system community.
        Front. Physiol. 2021; 24 (PMID: 34248680; PMCID: PMC8265045)693735https://doi.org/10.3389/fphys.2021.693735
        • Park K.S.
        Evaluation and management of caustic injuries from ingestion of acid or alkaline substances.
        Clin Endosc. 2014; 47 (Epub 2014 Jul 28. PMID: 25133115; PMCID: PMC4130883): 301-307https://doi.org/10.5946/ce.2014.47.4.301
        • Pearse A.G.E.
        • Polak J.M.
        Immunocytochemical localization of substance P in mammalian intestine.
        Histochemistry. 1975; 41: 373-375https://doi.org/10.1007/BF00490081
        • Pfannkuche H.
        • Reiche D.
        • Sann H.
        • Schemann M.
        Different subpopulations of cholinergic and nitrergic myenteric neurones project to mucosa and circular muscle of the Guinea-pig gastric fundus.
        Cell Tissue Res. 1998; 292 (PMID: 9582403): 463-475https://doi.org/10.1007/s004410051075
        • Pimont S.
        • Bruley Des Varannes S.
        • Le Neel J.C.
        • Aubert P.
        • Galmiche J.P.
        • Neunlist M.
        Neurochemical coding of myenteric neurones in the human gastric fundus.
        Neurogastroenterol. Motil. 2003; 15 (PMID: 14651601): 655-662https://doi.org/10.1046/j.1350-1925.2003.00442.x
        • Powley T.L.
        • Phillips R.J.
        Energy homeostasis: central integrators: visceral control.
        in: Squire L.R. Encyclopedia of Neuroscience. Academic Press, Oxford2008 (electronic)
        • Powley T.L.
        • Jaffey D.M.
        • Baronowsky E.A.
        • Black D.
        • Chesney L.
        • Evans C.
        • Phillips R.J.
        • McAdams J.
        Vagal innervation of the stomach reassessed: brain-gut connectome uses smart terminals.
        Ann N Y Acad Sci. 2019; 1454 (Epub 2019 Jul 3. PMID: 31268562; PMCID: PMC6810743): 14-30https://doi.org/10.1111/nyas.14138
        • Rajendran P.S.
        • Challis R.C.
        • Fowlkes C.C.
        • Hanna P.
        • Tompkins J.D.
        • Jordan M.C.
        • Hiyari S.
        • Gabris-Weber B.A.
        • Greenbaum A.
        • Chan K.Y.
        • Deverman B.E.
        • Münzberg H.
        • Ardell J.L.
        • Salama G.
        • Gradinaru V.
        • Shivkumar K.
        Identification of peripheral neural circuits that regulate heart rate using optogenetic and viral vector strategies.
        Nat. Commun. 2019; 10: 1944
        • Reiche D.
        • Schemann M.
        Mucosa of the Guinea pig gastric corpus is innervated by myenteric neurones with specific neurochemical coding and projection preferences.
        J. Comp. Neurol. 1999; 410 (PMID: 10404414): 489-502
        • Rosas-Ballina M.
        • Tracey K.J.
        Cholinergic control of inflammation.
        J. Intern. Med. 2009; 265 (PMID: 19493060; PMCID: PMC4540232): 663-679https://doi.org/10.1111/j.1365-2796.2009.02098.x
        • Rydning A.
        • Lyng O.
        • Aase S.
        • Gronbech J.E.
        Substance P may attenuate gastric hyperemia by a mast cell-dependent mechanism in the damaged gastric mucosa.
        Am. J. Phys. 1999; 277 (PMID: 10564113): G1064-G1073https://doi.org/10.1152/ajpgi.1999.277.5.G1064
        • Salena B.J.
        • Hunt R.H.
        The stomach and duodenum.
        in: Thomson A.B.R. Shaffer E.A. First Principles of Gastroenterology: The Basis of Disease and an Approach to Management. 2nd edition. Canadian Association of Gastroenterology/Astra Pharma, Mississauga, Canada1994
        • Schemann M.
        • Neunlist M.
        The human enteric nervous system.
        Neurogastroenterol. Motil. 2004; 16 (PMID: 15066006): 55-59https://doi.org/10.1111/j.1743-3150.2004.00476.x
        • Schemann M.
        • Schaaf C.
        • Mäder M.
        Neurochemical coding of enteric neurons in the Guinea pig stomach.
        J. Comp. Neurol. 1995; 353 (PMID: 7538152): 161-178https://doi.org/10.1002/cne.903530202
        • Schmidt P.T.
        • Holst J.J.
        Tachykinins in regulation of gastric motility and secretion.
        Cell. Mol. Life Sci. 2000; 57 (PMID: 11130458): 579-588https://doi.org/10.1007/PL00000720
        • Schubert M.L.
        The effect of vasoactive intestinal polypeptide on gastric acid secretion is predominantly mediated by somatostatin.
        Gastroenterology. 1991; 100 (PMID: 1672856): 1195-1200
        • Sgambato D.
        • Capuano A.
        • Sullo M.G.
        • Miranda A.
        • Federico A.
        • Romano M.
        Gut-brain Axis in gastric mucosal damage and protection.
        Curr. Neuropharmacol. 2016; 14 (PMID: 26903151; PMCID: PMC5333589): 959-966https://doi.org/10.2174/1570159x14666160223120742
        • Shahrokhi N.
        • Khaksari M.
        • Nourizad S.
        • Shahrokhi N.
        • Soltani Z.
        • Gholamhosseinian A.
        Protective effects of an interaction between vagus nerve and melatonin on gastric ischemia/reperfusion: the role of oxidative stress.
        Iran J basicMed Sci. 2016; 19 (PMID: 27096067; PMCID: PMC4823619): 72-79
        • Sharkey K.A.
        • Williams R.G.
        • Dockray G.J.
        Sensory substance P innervation of the stomach and pancreas. Demonstration of capsaicin-sensitive sensory neurons in the rat by combined immunohistochemistry and retrograde tracing.
        Gastroenterology. 1984; 87 (PMID: 6205934): 914-921
        • Shen Z.
        • She Y.X.
        • Wang W.C.
        • Wang L.H.
        Immunohistochemical study of peptidergic nerves in infantile hypertrophic pyloric stenosis.
        Pediatr. Surg. Int. 1990; 5: 110-113
        • Sipos G.
        • Sipos P.
        • Altdorfer K.
        • Pongor E.
        • Fehér E.
        Correlation and immunolocalization of substance P nerve fibers and activated immune cells in human chronic gastritis.
        Anat. Rec. (Hoboken). 2008; 291 (PMID: 18727057): 1140-1148https://doi.org/10.1002/ar.20737
        • Smith V.C.
        • Dhatt N.
        • Buchan A.M.
        The innervation of the human antro-pyloric region: organization and composition.
        Can. J. Physiol. Pharmacol. 2001; 79 (PMID: 11760092): 905-918
        • Smits G.J.
        • Lefebvre R.A.
        Tachykinin receptors involved in the contractile effect of the natural tachykinins in the rat gastric fundus.
        J. Auton. Pharmacol. 1994; 14 (PMID: 7533168): 383-392https://doi.org/10.1111/j.1474-8673.1994.tb00619.x
        • Sundler F.
        • Ekblad E.
        • Håkanson R.
        Occurrence and distribution of substance P- and CGRP-containing nerve fibers in gastric mucosa: species differences.
        Adv. Exp. Med. Biol. 1991; 298 (PMID: 1719780): 29-37https://doi.org/10.1007/978-1-4899-0744-8_3
        • Suzuki T.
        • Kagoshima M.
        • Shibata M.
        • Inaba N.
        • Onodera S.
        • Yamaura T.
        • Shimada H.
        Effects of several denervation procedures on distribution of calcitonin gene-related peptide and substance P immunoreactive in rat stomach.
        Dig. Dis. Sci. 1997; 42 (PMID: 9201090): 1242-1254https://doi.org/10.1023/a:1018858208532
        • Tache Y.
        Brainstem neuropeptides and vagal protection of the gastric mucosal against injury: role of prostaglandins, nitric oxide and calcitonin-gene related peptide in capsaicin afferents.
        Curr. Med. Chem. 2012; 19 (PMID: 22300074; PMCID: PMC3694172): 35-42https://doi.org/10.2174/092986712803414097
        • Vigna S.R.
        • Mantyh C.R.
        • Soll A.H.
        • Maggio J.E.
        • Mantyh P.W.
        Substance P receptors on canine chief cells: localization, characterization, and function.
        J. Neurosci. 1989; 9: 2878 ±2886
        • Vittal H.
        • Farrugia G.
        • Gomez G.
        • Pasricha P.J.
        Mechanisms of disease: the pathological basis of gastroparesis–a review of experimental and clinical studies.
        Nat. Clin. Pract. Gastroenterol. Hepatol. 2007; 4 (PMID: 17541447): 336-346https://doi.org/10.1038/ncpgasthep0838
        • Wattchow D.A.
        • Costa M.
        Distribution of peptide-containing nerve fibres in achalasia of the oesophagus.
        J. Gastroenterol. Hepatol. 1996; 11 (PMID: 8743921): 478-485https://doi.org/10.1111/j.1440-1746.1996.tb00294.x
        • Wattchow D.A.
        • Furness J.B.
        • Costa M.
        Distribution and coexistence of peptides in nerve fibers of the external muscle of the human gastrointestinal tract.
        Gastroenterology. 1988; 95 (PMID: 2453391): 32-41https://doi.org/10.1016/0016-5085(88)90287-9
        • Yanakieva D.
        • Pekar L.
        • Evers A.
        • Fleischer M.
        • Keller S.
        • Mueller-Pompalla D.
        • Toleikis L.
        • Kolmar H.
        • Zielonka S.
        • Krah S.
        Beyond bispecificity: controlled fab arm exchange for the generation of antibodies with multiple specificities.
        MAbs. 2022; 14 (PMID: 35014603; PMCID: PMC8757479): 2018960https://doi.org/10.1080/19420862.2021.2018960
        • Yang X.
        • Lou J.
        • Shan W.
        • Ding J.
        • Jin Z.
        • Hu Y.
        • Du Q.
        • Liao Q.
        • Xie R.
        • Xu J.
        Pathophysiologic role of neurotransmitters in digestive diseases.
        Front. Physiol. 2021; 14567650https://doi.org/10.3389/fphys.2021.567650. PMID: 34194334; PMCID: PMC8236819
        • Yokotani K.
        • Fujiwara M.
        Effects of substance P on cholinergically stimulated gastric acid secretion and mucosal blood flow in rats.
        J. Pharmacol. Exp. Ther. 1985; 232 (PMID: 2579233): 826-830
        • Yokoyama T.
        • Lee J.-K.
        • Miwa K.
        • Opthof T.
        • Tomoyama S.
        • Nakanishi H.
        • Yoshida A.
        • Yasui H.
        • Iida T.
        • Miyagawa S.
        • Okabe S.
        • Sawa Y.
        • Sakata Y.
        • Komuro I.
        Quantification of sympathetic hyperinnervation and denervation after myocardial infarction by three-dimensional assessment of the cardiac sympathetic network in cleared transparent murine hearts.
        PLoS ONE. 2017; 12e0182072
        • Zalecki M.
        Gastric ulcer induced changes in substance P and Nk1, Nk2, Nk3 receptors expression in different stomach localizations with regard to intrinsic neuronal system.
        Histochem Cell Biol. 2019; 151 (Epub 2018 Aug 28. PMID: 30155561; PMCID: PMC6328524): 29-42https://doi.org/10.1007/s00418-018-1715-4
        • Zanelli J.M.
        • Stracca-Gasser M.
        • Gaines-Das R.E.
        • Guidobono F.
        The short term effect of peripherally administered brain-gut peptides on gastric acid secretion in rats.
        Agents Actions. 1992; 35 (PMID: 1380763): 122-129https://doi.org/10.1007/BF01990961
        • Zubrzycka M.
        • Janecka A.
        Substance P: transmitter of nociception (minireview).
        Endocr. Regul. 2000; 34 (PMID: 11137976): 195-201